Weighted Montgomery identity for the fractional integral of a function with respect to another function

被引:2
|
作者
Aljinovic, Andrea Aglic [1 ]
Krnic, Mario [1 ]
Pecaric, Josip [2 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Zagreb 10000, Croatia
[2] Univ Zagreb, Fac Text Technol, Zagreb 10000, Croatia
关键词
Fractional integral; Montgomery identity; Ostrowski inequality;
D O I
10.1515/gmj-2014-0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a weighted Montgomery identity for the fractional integral of a function f with respect to another function g and use it to obtain weighted Ostrowski type inequalities for fractional integrals involving functions whose first derivatives belong to L (p) spaces. These inequalities are generally sharp in case p > 1 and best possible in case p = 1. Applications for the Hadamard fractional integrals are given.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] A Note on Reverse Minkowski Inequality via Generalized Proportional Fractional Integral Operator with respect to Another Function
    Rashid, Saima
    Jarad, Fahd
    Chu, Yu-Ming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [22] Subdiffusion equation with Caputo fractional derivative with respect to another function
    Kosztolowicz, Tadeusz
    Dutkiewicz, Aldona
    PHYSICAL REVIEW E, 2021, 104 (01)
  • [23] On the variable-order fractional derivatives with respect to another function
    Almeida, Ricardo
    AEQUATIONES MATHEMATICAE, 2024,
  • [24] Parametric general fractional calculus: nonlocal operators acting on function with respect to another function
    Tarasov, Vasily E.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [25] On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function
    Kottakkaran Sooppy Nisar
    Gauhar Rahman
    Dumitru Baleanu
    Muhammad Samraiz
    Sajid Iqbal
    Advances in Difference Equations, 2020
  • [26] On the weighted fractional Polya-Szego and Chebyshev-types integral inequalities concerning another function
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Baleanu, Dumitru
    Samraiz, Muhammad
    Iqbal, Sajid
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [27] A new weighted fractional operator with respect to another function via a new modified generalized Mittag–Leffler law
    Sabri T. M. Thabet
    Thabet Abdeljawad
    Imed Kedim
    M. Iadh Ayari
    Boundary Value Problems, 2023
  • [28] Nonlinear Piecewise Caputo Fractional Pantograph System with Respect to Another Function
    Abdo, Mohammed S. S.
    Shammakh, Wafa
    Alzumi, Hadeel Z. Z.
    Alghamd, Najla
    Albalwi, M. Daher
    FRACTAL AND FRACTIONAL, 2023, 7 (02)
  • [29] On Fejer Type Inequalities for Convex Mappings Utilizing Fractional Integrals of a Function with Respect to Another Function
    Budak, Huseyin
    RESULTS IN MATHEMATICS, 2019, 74 (01)
  • [30] Impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function
    Chanon Promsakon
    Eakachai Suntonsinsoungvon
    Sotiris K. Ntouyas
    Jessada Tariboon
    Advances in Difference Equations, 2019