Defect-tolerant extreme ultraviolet nanoscale printing

被引:40
|
作者
Urbanski, L. [1 ,2 ]
Isoyan, A. [3 ]
Stein, A. [4 ]
Rocca, J. J. [1 ,2 ]
Menoni, C. S. [1 ,2 ]
Marconi, M. C. [1 ,2 ]
机构
[1] Colorado State Univ, Engn Res Ctr Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[3] Synopsys Inc, Hillsboro, OR 97124 USA
[4] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
X-RAY LASER; REPETITION RATE; LITHOGRAPHY;
D O I
10.1364/OL.37.003633
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a defect-free lithography method for printing periodic features with nanoscale resolution using coherent extreme ultraviolet light. This technique is based on the self-imaging effect known as the Talbot effect, which is produced when coherent light is diffracted by a periodic mask. We present a numerical simulation and an experimental verification of the method with a compact extreme ultraviolet laser. Furthermore, we explore the extent of defect tolerance by testing masks with different defect layouts. The experimental results are in good agreement with theoretical calculations. (c) 2012 Optical Society of America
引用
收藏
页码:3633 / 3635
页数:3
相关论文
共 50 条
  • [31] NANOLAB - A tool for evaluating reliability of defect-tolerant nanoarchitectures
    Bhaduri, D
    Shukla, S
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (04) : 381 - 394
  • [32] Thin Absorbers for Defect-Tolerant Solar Cell Design
    Needleman, David Berney
    Augusto, Andre
    Peral, Ana
    Bowden, Stuart
    del Canizo, Carlos
    Buonassisi, Tonio
    2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 606 - 610
  • [33] Predicting defect-tolerant yield in the embedded core context
    Meyer, FJ
    Park, N
    IEEE TRANSACTIONS ON COMPUTERS, 2003, 52 (11) : 1470 - 1479
  • [34] A dual-rail compact defect-tolerant multiplexer
    Ben Dhia, A.
    Slimani, M.
    Cai, H.
    Naviner, L. A. de B.
    MICROELECTRONICS RELIABILITY, 2015, 55 (3-4) : 662 - 670
  • [35] A Defect-Tolerant Multiplexer Using Differential Logic for FPGAs
    Ben Dhia, Arwa
    Slimani, Mariem
    Naviner, Lirida
    2014 PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS (MIXDES), 2014, : 375 - 380
  • [36] Cross Logic: a New Approach for Defect-Tolerant Circuits
    Slimani, Mariem
    Ben Dhia, Arwa
    Naviner, Lirida
    2014 IEEE INTERNATIONAL CONFERENCE ON IC DESIGN & TECHNOLOGY (ICICDT), 2014,
  • [37] A defect-tolerant molecular-based memory architecture
    Choi, Yoon-Hwa
    Lee, Myeong-Hyeon
    DFT 2007: 22ND IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT-TOLERANCE IN VLSI SYSTEMS, PROCEEDINGS, 2007, : 143 - 151
  • [38] Defect-tolerant computing based on an Asynchronous Cellular Automaton
    Isokawa, T
    Abo, F
    Peper, F
    Kamiura, N
    Matsui, N
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 2333 - 2336
  • [39] Defect-tolerant CMOL cell assignment via satisfiability
    Hung, William N. N.
    Gao, Changjian
    Song, Xiaoyu
    Hammerstrom, Dan
    IEEE SENSORS JOURNAL, 2008, 8 (5-6) : 823 - 830
  • [40] Bridging theory and experiment in defect-tolerant semiconductors for photovoltaics
    Hammer, Maria S.
    Schlott, Hannah
    Lueer, Larry
    Brabec, Christoph J.
    Sytnyk, Mykhailo
    Will, Johannes
    Meyer, Bernd
    Heiss, Wolfgang
    NATURE REVIEWS MATERIALS, 2025, 10 (04): : 311 - 325