Density-functional based tight-binding modelling of ZnO structures

被引:5
|
作者
Fisker, Christian [1 ]
Pedersen, Thomas G. [1 ]
机构
[1] Aalborg Univ, Dept Phys & Nanotechnol, DK-9220 Aalborg, Denmark
来源
关键词
1ST-PRINCIPLES; SIMULATIONS;
D O I
10.1002/pssb.200844370
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A self-consistent charge density-functional based tight-binding (SCC-DFTB) parametrisation for structural optimization and electronic properties of zinc oxide is presented. Repulsive potentials are obtained from the ZnO wurzite geometry and a thin nanowire and applied to the bulk rock salt phase, a (0001) oriented slab and nanowires of different sizes. The parametrisation is shown to reproduce geometries in agreement with DFT calculations. A different set of parameters is generated for electronic calculations giving bank structures with a bulk bank gap of 3.3 eV and a strong split-off of the d-bands in agreement with experiments.(C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:354 / 360
页数:7
相关论文
共 50 条
  • [31] Density functional based tight-binding parametrization of hafnium oxide: Simulations of amorphous structures
    Franke, Dennis
    Hettich, Christian
    Koehler, Thomas
    Turowski, Marcus
    Ehlers, Henrik
    Ristau, Detlev
    Frauenheim, Thomas
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [32] Density-functional based tight-binding study of small gold clusters -: art. no. 9
    Koskinen, P
    Häkkinen, H
    Seifert, G
    Sanna, S
    Frauenheim, T
    Moseler, M
    NEW JOURNAL OF PHYSICS, 2006, 8
  • [33] The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding
    Van Quan Vuong
    Nishimoto, Yoshio
    Fedorov, Dmitri G.
    Sumpter, Bobby G.
    Niehaus, Thomas A.
    Irle, Stephan
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (05) : 3008 - 3020
  • [34] Simulation of Structural Evolution Using Time-Dependent Density-Functional Based Tight-Binding Method
    Lee, Seung Mi
    Niehaus, Thomas A.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (11) : 7206 - 7209
  • [35] Structural properties of metal-organic frameworks within the density-functional based tight-binding method
    Lukose, Binit
    Supronowicz, Barbara
    St Petkov, Petko
    Frenzel, Johannes
    Kuc, Agnieszka B.
    Seifert, Gotthard
    Vayssilov, Georgi N.
    Heine, Thomas
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (02): : 335 - 342
  • [36] Density-Functional Tight-Binding Parameters for Bulk Zirconium: A Case Study for Repulsive Potentials
    Hutama, Aulia Sukma
    Chou, Chien-Pin
    Nishimura, Yoshifumi
    Witek, Henryk A.
    Irle, Stephan
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (10): : 2184 - 2196
  • [37] Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning
    Kranz, Julian J.
    Kubillus, Maximilian
    Ramakrishnan, Raghunathan
    von Lilienfeld, O. Anatole
    Elstner, Marcus
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (05) : 2341 - 2352
  • [38] Scalable Ehrenfest Molecular Dynamics Exploiting the Locality of Density-Functional Tight-Binding Hamiltonian
    Uratani, Hiroki
    Nakai, Hiromi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (12) : 7384 - 7396
  • [39] Artificial neural network correction for density-functional tight-binding molecular dynamics simulations
    Junmian Zhu
    Van Quan Vuong
    Bobby G. Sumpter
    Stephan Irle
    MRS Communications, 2019, 9 : 867 - 873
  • [40] Artificial neural network correction for density-functional tight-binding molecular dynamics simulations
    Zhu, Junmian
    Van Quan Vuong
    Sumpter, Bobby G.
    Irle, Stephan
    MRS COMMUNICATIONS, 2019, 9 (03) : 867 - 873