Vector quantization and minimum description length

被引:0
|
作者
Bischof, H [1 ]
Leonardis, A [1 ]
机构
[1] Vienna Univ Technol, Pattern Recognit & Image Proc Grp, A-1040 Vienna, Austria
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we address the problem of finding the optimal number of reference vectors in vector quantization from the point of view of the Minimum Description Length (MDL) principle. We formulate the VQ in terms of the MDL principle, and then derive depending on the coding procedure different instantiations of the algorithm. Moreover, we develop an efficient algorithm (similar to EM-type algorithms) for optimizing the MDL criterion. In addition we can use the MDL principle to increase the robustness of the training algorithm. In order to visualize the behavior of the algorithm, well illustrate our approach on 2D clustering problems and present applications on image coding. Finally we outline various ways to extend the algorithm.
引用
收藏
页码:355 / 364
页数:10
相关论文
共 50 条
  • [31] Multiple description trellis-coded vector quantization
    Zhou, GC
    Zhang, Z
    [J]. GLOBECOM '01: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6, 2001, : 1414 - 1420
  • [32] Minimum description length shape and appearance models
    Thodberg, HH
    [J]. INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2003, 2732 : 51 - 62
  • [33] Model selection and the principle of minimum description length
    Hansen, MH
    Yu, B
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) : 746 - 774
  • [34] Minimum description length method for facet matching
    Maybank, S
    Fraile, R
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2000, 14 (07) : 919 - 927
  • [35] Model selection based on minimum description length
    Grünwald, P
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2000, 44 (01) : 133 - 152
  • [36] Minimum description length, regularization, and multimodal data
    Rohwer, R
    vanderRest, JC
    [J]. NEURAL COMPUTATION, 1996, 8 (03) : 595 - 609
  • [37] Information Geometry and Minimum Description Length Networks
    Sun, Ke
    Wang, Jun
    Kalousis, Alexandros
    Marchand-Maillet, Stephane
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 49 - 58
  • [38] Image segmentation based on minimum description length
    Wen, FR
    Yuan, BZ
    Tang, XF
    [J]. 2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 749 - 752
  • [39] OPTIMAL NETWORK CONSTRUCTION BY MINIMUM DESCRIPTION LENGTH
    KENDALL, GD
    HALL, TJ
    [J]. NEURAL COMPUTATION, 1993, 5 (02) : 210 - 212
  • [40] Minimum noiseless description length (MNDL) thresholding
    Fakhrzadeh, Azadeh
    Beheshti, Soosan
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN IMAGE AND SIGNAL PROCESSING, 2007, : 146 - 150