Vector quantization and minimum description length

被引:0
|
作者
Bischof, H [1 ]
Leonardis, A [1 ]
机构
[1] Vienna Univ Technol, Pattern Recognit & Image Proc Grp, A-1040 Vienna, Austria
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we address the problem of finding the optimal number of reference vectors in vector quantization from the point of view of the Minimum Description Length (MDL) principle. We formulate the VQ in terms of the MDL principle, and then derive depending on the coding procedure different instantiations of the algorithm. Moreover, we develop an efficient algorithm (similar to EM-type algorithms) for optimizing the MDL criterion. In addition we can use the MDL principle to increase the robustness of the training algorithm. In order to visualize the behavior of the algorithm, well illustrate our approach on 2D clustering problems and present applications on image coding. Finally we outline various ways to extend the algorithm.
引用
收藏
页码:355 / 364
页数:10
相关论文
共 50 条
  • [21] AN IMPROVEMENT OF THE MINIMUM DISTORTION ENCODING ALGORITHM FOR VECTOR QUANTIZATION
    BEI, CD
    GRAY, RM
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1985, 33 (10) : 1132 - 1133
  • [22] Entropy constrained multiple description lattice vector quantization
    Ostergaard, J
    Jensen, J
    Heusdens, R
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PROCEEDINGS: AUDIO AND ELECTROACOUSTICS SIGNAL PROCESSING FOR COMMUNICATIONS, 2004, : 601 - 604
  • [23] Minimum description length modelling of musical structure
    Mavromatis, Panayotis
    [J]. JOURNAL OF MATHEMATICS AND MUSIC, 2009, 3 (03) : 117 - 136
  • [24] The minimum description length principle in coding and modeling
    Barron, A
    Rissanen, J
    Yu, B
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) : 2743 - 2760
  • [25] Minimum description length: Theory and applications.
    Chechile, Richard A.
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2006, 50 (05) : 512 - 513
  • [26] Minimum description length denoising with histogram models
    Kumar, Vibhor
    Heikkonen, Jukka
    Rissanen, Jorma
    Kaski, Kimmo
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (08) : 2922 - 2928
  • [27] Incremental Learning with the Minimum Description Length Principle
    Murena, Pierre-Alexandre
    Cornuejols, Antoine
    Dessalles, Jean-Louis
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1908 - 1915
  • [28] Minimum Description Length Recurrent Neural Networks
    Lan, Nur
    Geyer, Michal
    Chemla, Emmanuel
    Katzir, Roni
    [J]. TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2022, 10 : 785 - 799
  • [29] Considerations on the weighted minimum description length criterion
    Matsushiro, Nobuhito
    [J]. Inst of Television Engineers of Japan, Tokyo (50):
  • [30] Minimum description length understanding of infrared scenes
    Lanterman, AD
    [J]. AUTOMATIC TARGET RECOGNITION VIII, 1998, 3371 : 375 - 386