Vector quantization and minimum description length

被引:0
|
作者
Bischof, H [1 ]
Leonardis, A [1 ]
机构
[1] Vienna Univ Technol, Pattern Recognit & Image Proc Grp, A-1040 Vienna, Austria
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we address the problem of finding the optimal number of reference vectors in vector quantization from the point of view of the Minimum Description Length (MDL) principle. We formulate the VQ in terms of the MDL principle, and then derive depending on the coding procedure different instantiations of the algorithm. Moreover, we develop an efficient algorithm (similar to EM-type algorithms) for optimizing the MDL criterion. In addition we can use the MDL principle to increase the robustness of the training algorithm. In order to visualize the behavior of the algorithm, well illustrate our approach on 2D clustering problems and present applications on image coding. Finally we outline various ways to extend the algorithm.
引用
收藏
页码:355 / 364
页数:10
相关论文
共 50 条
  • [1] A source coding approach to classification by vector quantization and the principle of minimum description length
    Li, J
    [J]. DCC 2002: DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2002, : 382 - 391
  • [2] Context Quantization based on Minimum Description Length and Hierarchical Clustering
    Chen, Hui
    Chen, Jianhua
    [J]. 2016 8TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2016), 2016, 56
  • [3] Minimum description length revisited
    Grunwald, Peter
    Roos, Teemu
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2019, 11 (01):
  • [4] Spherical Minimum Description Length
    Herntier, Trevor
    Ihou, Koffi Eddy
    Smith, Anthony
    Rangarajan, Anand
    Peter, Adrian
    [J]. ENTROPY, 2018, 20 (08):
  • [5] A new minimum description length
    Beheshti, S
    Dahleh, MA
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 1602 - 1607
  • [6] Minimum description length tutorial
    Grünwald, P
    [J]. ADVANCES IN MINIMUM DESCRIPTION LENGTH THEORY AND APPLICATIONS, 2005, : 23 - 79
  • [7] Multiple description lattice vector quantization
    Servetto, SD
    Vaishampayan, VA
    Sloane, NJA
    [J]. DCC '99 - DATA COMPRESSION CONFERENCE, PROCEEDINGS, 1999, : 13 - 22
  • [8] Generalized multiple description vector quantization
    Fleming, M
    Effros, M
    [J]. DCC '99 - DATA COMPRESSION CONFERENCE, PROCEEDINGS, 1999, : 3 - 12
  • [9] Context quantization by minimum adaptive code length
    Forchhammer, Soren
    Wu, Xiaolin
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 246 - +
  • [10] DATA EFFICIENT SUPPORT VECTOR MACHINE TRAINING USING THE MINIMUM DESCRIPTION LENGTH PRINCIPLE
    Singh, Harsh
    Arandjelovic, Ognjen
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1361 - 1365