Target-Specific Precision of CRISPR-Mediated Genome Editing

被引:159
|
作者
Chakrabarti, Anob M. [1 ,2 ]
Henser-Brownhill, Tristan [3 ]
Monserrat, Josep [3 ]
Poetsch, Anna R. [1 ,2 ,4 ]
Luscombe, Nicholas M. [1 ,2 ,4 ]
Scaffidi, Paola [3 ,5 ]
机构
[1] Francis Crick Inst, Bioinformat & Computat Biol Lab, 1 Midland Rd, London NW1 1AT, England
[2] UCL, UCL Genet Inst, Dept Genet Evolut & Environm, London WC1E 6BT, England
[3] Francis Crick Inst, Canc Epigenet Lab, 1 Midland Rd, London NW1 1AT, England
[4] Okinawa Inst Sci & Technol Grad Univ, Onna, Okinawa, Japan
[5] UCL, UCL Canc Inst, London WC1E 6DD, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
SCREENS;
D O I
10.1016/j.molcel.2018.11.031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms. However, our ability to predict the editing outcome at specific sites is limited. Here, we examined indel profiles at over 1,000 genomic sites in human cells and uncovered general principles guiding CRISPR-mediated DNA editing. We find that precision of DNA editing (i.e., recurrence of a specific indel) varies considerably among sites, with some targets showing one highly preferred indel and others displaying numerous infrequent indels. Editing precision correlates with editing efficiency and a preference for single-nucleotide homologous insertions. Precise targets and editing outcome can be predicted based on simple rules that mainly depend on the fourth nucleotide upstream of the protospacer adjacent motif (PAM). Indel profiles are robust, but they can be influenced by chromatin features. Our findings have important implications for clinical applications of CRISPR technology and reveal general patterns of broken end joining that can provide insights into DNA repair mechanisms.
引用
收藏
页码:699 / +
页数:21
相关论文
共 50 条
  • [41] Highly efficient CRISPR-mediated gene editing in a rotifer
    Feng, Haiyang
    Bavister, Gemma
    Gribble, Kristin
    Welch, David Mark
    PLOS BIOLOGY, 2023, 21 (07)
  • [42] In utero CRISPR-mediated therapeutic editing of metabolic genes
    Avery C. Rossidis
    John D. Stratigis
    Alexandra C. Chadwick
    Heather A. Hartman
    Nicholas J. Ahn
    Haiying Li
    Kshitiz Singh
    Barbara E. Coons
    Li Li
    Wenjian Lv
    Philip W. Zoltick
    Deepthi Alapati
    William Zacharias
    Rajan Jain
    Edward E. Morrisey
    Kiran Musunuru
    William H. Peranteau
    Nature Medicine, 2018, 24 : 1513 - 1518
  • [43] Application of CRISPR-Mediated Gene Editing for Crop Improvement
    Negi, Chandranandani
    Vasistha, Neeraj Kumar
    Singh, Dharmendra
    Vyas, Pritesh
    Dhaliwal, H. S.
    MOLECULAR BIOTECHNOLOGY, 2022, 64 (11) : 1198 - 1217
  • [44] Application of CRISPR-Mediated Gene Editing for Crop Improvement
    Chandranandani Negi
    Neeraj Kumar Vasistha
    Dharmendra Singh
    Pritesh Vyas
    H. S. Dhaliwal
    Molecular Biotechnology, 2022, 64 : 1198 - 1217
  • [45] CRISPR-Mediated Gene Editing: Scientific and Ethical Issues
    Bailey, Jarred
    TRENDS IN BIOTECHNOLOGY, 2019, 37 (09) : 920 - 921
  • [46] CGMP Compliant Microfluidic Transfection of Induced Pluripotent Stem Cells for CRISPR-Mediated Genome Editing
    Bohrer, Laura R.
    Stone, Nicholas E.
    Wright, Allison T.
    Han, Sewoon
    Sicher, Ian
    Sulchek, Todd A.
    Mullins, Robert F.
    Tucker, Budd A.
    STEM CELLS, 2023, 41 (11) : 1037 - 1046
  • [47] Modeling ovarian cancer in mice using in vivo electroporation and CRISPR-mediated genome editing.
    Harwalkar, Keerthana
    Teng, Katie
    Arceneau, Jocelyn
    Zhao, Yifan
    Farnell, Dave
    Ford, Matt
    Nu, Tuyet Nhung Tun
    Huntsman, David
    Yamanaka, Yojiro
    CLINICAL CANCER RESEARCH, 2020, 26 (13) : 88 - 88
  • [48] Postnatal CRISPR-mediated genome editing prolongs survival in a mouse model of amyotrophic lateral sclerosis
    Kennedy, Zachary
    Xue, Wen
    Brown, Robert
    NEUROLOGY, 2017, 88
  • [49] Fast and efficient CRISPR-mediated genome editing in Aureobasidium using Cas9 ribonucleoproteins
    Kreuter, Johanna
    Stark, Georg
    Mach, Robert L.
    Mach-Aigner, Astrid R.
    Zimmermann, Christian
    JOURNAL OF BIOTECHNOLOGY, 2022, 350 : 11 - 16
  • [50] CRISPRseek: A Bioconductor Package to Identify Target-Specific Guide RNAs for CRISPR-Cas9 Genome-Editing Systems
    Zhu, Lihua J.
    Holmes, Benjamin R.
    Aronin, Neil
    Brodsky, Michael H.
    PLOS ONE, 2014, 9 (09):