Target-Specific Precision of CRISPR-Mediated Genome Editing

被引:159
|
作者
Chakrabarti, Anob M. [1 ,2 ]
Henser-Brownhill, Tristan [3 ]
Monserrat, Josep [3 ]
Poetsch, Anna R. [1 ,2 ,4 ]
Luscombe, Nicholas M. [1 ,2 ,4 ]
Scaffidi, Paola [3 ,5 ]
机构
[1] Francis Crick Inst, Bioinformat & Computat Biol Lab, 1 Midland Rd, London NW1 1AT, England
[2] UCL, UCL Genet Inst, Dept Genet Evolut & Environm, London WC1E 6BT, England
[3] Francis Crick Inst, Canc Epigenet Lab, 1 Midland Rd, London NW1 1AT, England
[4] Okinawa Inst Sci & Technol Grad Univ, Onna, Okinawa, Japan
[5] UCL, UCL Canc Inst, London WC1E 6DD, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
SCREENS;
D O I
10.1016/j.molcel.2018.11.031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms. However, our ability to predict the editing outcome at specific sites is limited. Here, we examined indel profiles at over 1,000 genomic sites in human cells and uncovered general principles guiding CRISPR-mediated DNA editing. We find that precision of DNA editing (i.e., recurrence of a specific indel) varies considerably among sites, with some targets showing one highly preferred indel and others displaying numerous infrequent indels. Editing precision correlates with editing efficiency and a preference for single-nucleotide homologous insertions. Precise targets and editing outcome can be predicted based on simple rules that mainly depend on the fourth nucleotide upstream of the protospacer adjacent motif (PAM). Indel profiles are robust, but they can be influenced by chromatin features. Our findings have important implications for clinical applications of CRISPR technology and reveal general patterns of broken end joining that can provide insights into DNA repair mechanisms.
引用
收藏
页码:699 / +
页数:21
相关论文
共 50 条
  • [21] CRISPR-mediated Genome Editing of the Human Fungal Pathogen Candida albicans
    Evans, Ben A.
    Pickerill, Ethan S.
    Vyas, Valmik K.
    Bernstein, Douglas A.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (141):
  • [22] CRISPR-mediated Genome Editing Restores Dystrophin Expression and Function in mdx Mice
    Xu, Li
    Park, Ki Ho
    Zhao, Lixia
    Xu, Jing
    El Refaey, Mona
    Gao, Yandi
    Zhu, Hua
    Ma, Jianjie
    Han, Renzhi
    MOLECULAR THERAPY, 2016, 24 (03) : 564 - 569
  • [23] CRISPR-mediated genome editing to treat MPS I mice with AAV vectors
    Ou, Li
    Przybilla, Michael
    Whitley, Chester
    MOLECULAR GENETICS AND METABOLISM, 2018, 123 (02) : S112 - S112
  • [24] Rapid and efficient CRISPR-mediated genome editing with cloning-free method
    Liu, Wuqing
    Zhang, Yunbin
    Li, Shifeng
    Li, Yiping
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2018, 50 (11) : 1173 - 1175
  • [25] Using Nanopore Sequencing to Characterize On-Target CRISPR-Mediated Gene Editing
    Simpson, Bryan P.
    Yrigollen, Carolyn M.
    Ranum, Paul T.
    Davidson, Beverly L.
    MOLECULAR THERAPY, 2020, 28 (04) : 278 - 279
  • [26] CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications
    Peng Cai
    Jiaoqi Gao
    Yongjin Zhou
    Microbial Cell Factories, 18
  • [27] CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications
    Cai, Peng
    Gao, Jiaoqi
    Zhou, Yongjin
    MICROBIAL CELL FACTORIES, 2019, 18 (1)
  • [28] An Efficient, Rapid, and Recyclable System for CRISPR-Mediated Genome Editing in Candida albicans
    Nguyen, Namkha
    Quail, Morgan M. F.
    Hernday, Aaron D.
    MSPHERE, 2017, 2 (02):
  • [29] CRISPR-mediated gene editing for the surgeon scientist
    O'Brien, Stephen J.
    Ekman, Matthew B.
    Manek, Stephen
    Galandiuk, Susan
    SURGERY, 2019, 166 (02) : 129 - 137
  • [30] Nonviral genome editing based on a CRISPR nanocomplex for target-specific treatment of multidrug-resistant bacterial infections
    Kang, Yoo Kyung
    Chung, Hyun Jung
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253