BLOW-UP OF SOLUTIONS TO A NONLINEAR WAVE EQUATION

被引:0
|
作者
Georgiev, Svetlin Georgiev [1 ]
机构
[1] Univ Sofia, Fac Math & Informat, Dept Differential Equat, Sofia, Bulgaria
关键词
Wave equation; blow-up; hyperbolic space;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the solutions to the the radial 2-dimensional wave equation [GRAPHICS] where r = vertical bar x vertical bar and x in R-2. We show that this Cauchy problem, with values into a hyperbolic space, is ill posed in subcritical Sobolev spaces. In particular, we construct a function g(t, r) in the space L-p([ 0, 1] L-rad(q)), with 1/p + 2/q = 3-gamma, 0 < gamma < 1, p >= 1, and 1 < q <= 2, for which the solution satisfies lim(t) (-> 0) parallel to(chi) over bar parallel to(H) over dot(rad)(gamma) = infinity. In doing so, we provide a counterexample to estimates in [1].
引用
收藏
页数:7
相关论文
共 50 条