Blow-Up of Solutions for a Class of Sixth Order Nonlinear Strongly Damped Wave Equation

被引:0
|
作者
Di, Huafei [1 ]
Shang, Yadong [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词
ASYMPTOTIC-BEHAVIOR; GLOBAL EXISTENCE; SCATTERING;
D O I
10.1155/2014/310297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the blow-up phenomenon of sixth order nonlinear strongly damped wave equation. By using the concavity method, we prove a finite time blow-up result under assumptions on the nonlinear term and the initial data.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] EXISTENCE AND BLOW-UP OF SOLUTIONS FOR THE SIXTH-ORDER DAMPED BOUSSINESQ EQUATION
    Wang, Y.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (05): : 1057 - 1071
  • [2] Existence and blow-up of a new class of nonlinear damped wave equation
    Tebba, Zakia
    Boulaaras, Salah
    Degaichia, Hakima
    Allahem, Ali
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (03) : 2649 - 2660
  • [3] Global solutions and blow-up for a class of strongly damped wave equations systems
    Yaojun Ye
    Lanlan Li
    [J]. Frontiers of Mathematics, 2022, 17 : 767 - 782
  • [4] Global solutions and blow-up for a class of strongly damped wave equations systems
    Ye, Yaojun
    Li, Lanlan
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2022, 17 (05) : 767 - 782
  • [5] Global solutions and finite time blow-up for fourth order nonlinear damped wave equation
    Xu, Runzhang
    Wang, Xingchang
    Yang, Yanbing
    Chen, Shaohua
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [6] Nonlinear damped wave equation: Existence and blow-up
    Messaoudi, Salim A.
    Talahmeh, Ala A.
    Al-Smail, Jamal H.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (12) : 3024 - 3041
  • [7] BLOW-UP OF SOLUTIONS TO A NONLINEAR WAVE EQUATION
    Georgiev, Svetlin Georgiev
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [8] ON THE BLOW-UP OF SOLUTIONS FOR THE UNSTABLE SIXTH ORDER PARABOLIC EQUATION
    Li, Zhenbang
    Liu, Changchun
    [J]. MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) : 429 - 439
  • [9] On blow-up of solutions for a semilinear damped wave equation with nonlinear dynamic boundary conditions
    Li, Gang
    Zhu, Biqing
    Wang, Danhua
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (04) : 777 - 783
  • [10] Blow-up of solutions of a nonlinear viscoelastic wave equation
    Song, Haitao
    Zhong, Chengkui
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3877 - 3883