RNA Family Classification Using the Conditional Random Fields Model

被引:0
|
作者
Subpaiboonkit, Sitthichoke [1 ,2 ]
Thammarongtham, Chinae [3 ]
Chaijaruwanich, Jeerayut [1 ,2 ,4 ]
机构
[1] Chiang Mai Univ, Dept Comp Sci, Fac Sci, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Bioinformat Res Lab, Fac Sci, Chiang Mai 50200, Thailand
[3] Natl Ctr Genet Engn & Biotechnol, Biochem Engn & Pilot Plant Res & Dev Unit, Bangkok 10150, Thailand
[4] Chiang Mai Univ, Ctr Biomed Engn, Fac Engineer, Chiang Mai 50200, Thailand
来源
CHIANG MAI JOURNAL OF SCIENCE | 2012年 / 39卷 / 01期
关键词
RNA family classification; Conditional random fields; bioinformatics; machine learning;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA family classification is one of the necesary tasks needed to characterize sequenced genomes. RNA families are defined by member sequences which perform the same function in different species. Such functions have a strong relationship with RNA secondary structures but not the primary sequence. Thus RNA sequences alone are not sufficient to classify RNA families. Here, we focus on computational RNA family classification by exploring primary sequences with RNA secondary structures as the selected feature to classify the RNA family using the method of conditional random fields (CRFs). This model treats RNA classification as a sequence labeling problem. Our CRFs models can classify the RNA families of the test RNA data sets with optimal F-score prediction between 98.77% - 99.32% for different RNA families.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] Biomedical named entities recognition using conditional random fields model
    Sun, Chengjie
    Guan, Yi
    Wang, Xiaolong
    Lin, Lei
    [J]. FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2006, 4223 : 1279 - 1288
  • [22] Online Forum Post Opinion Classification Based on Tree Conditional Random Fields Model
    Wu Yue
    Hu Yong
    He Xiaohai
    [J]. CHINA COMMUNICATIONS, 2013, 10 (08) : 125 - 136
  • [23] Classification of Stereo Images from Mobile Mapping Data Using Conditional Random Fields
    Coenen, Max
    Rottensteiner, Franz
    Heipke, Christian
    [J]. PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2017, 85 (01): : 17 - 30
  • [24] Environmental microorganism classification using conditional random fields and deep convolutional neural networks
    Kosov, Sergey
    Shirahama, Kimiaki
    Li, Chen
    Grzegorzek, Marcin
    [J]. PATTERN RECOGNITION, 2018, 77 : 248 - 261
  • [25] Classification of Stereo Images from Mobile Mapping Data Using Conditional Random Fields
    Max Coenen
    Franz Rottensteiner
    Christian Heipke
    [J]. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85 : 17 - 30
  • [26] Classification of Multitemporal Remote Sensing Data of Different Resolution using Conditional Random Fields
    Hoberg, Thorsten
    Rottensteiner, Franz
    Heipke, Christian
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCV WORKSHOPS), 2011,
  • [27] HIDDEN CONDITIONAL RANDOM FIELDS FOR LAND-USE CLASSIFICATION
    Skurikhin, Alexei N.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4376 - 4379
  • [28] Curb Reconstruction using Conditional Random Fields
    Siegemund, Jan
    Pfeiffer, David
    Franke, Uwe
    Foerstner, Wolfgang
    [J]. 2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2010, : 203 - 210
  • [29] Utterance Segmentation Using Conditional Random Fields
    Ben Dbabis, Samira
    Reguii, Boutheina
    Ghorbel, Hatem
    Belguith, Lamia Hadrich
    [J]. INNOVATION MANAGEMENT AND EDUCATION EXCELLENCE VISION 2020: FROM REGIONAL DEVELOPMENT SUSTAINABILITY TO GLOBAL ECONOMIC GROWTH, VOLS I - VI, 2016, : 3420 - 3426
  • [30] Evolving Neural Conditional Random Fields for drilling report classification
    Ribeiro, Luiz C. F.
    Afonso, Luis C. S.
    Colombo, Danilo
    Guilherme, Ivan R.
    Papa, Joao P.
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 187