HIDDEN CONDITIONAL RANDOM FIELDS FOR LAND-USE CLASSIFICATION

被引:0
|
作者
Skurikhin, Alexei N. [1 ]
机构
[1] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA
关键词
Conditional random fields; classification; remote sensing; land-use;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Undirected probabilistic graphical models such as Markov Random Fields (MRFs) and Conditional Random Fields (CRFs) are being increasingly used to model problems having a structured domain and to enable probabilistic inferences such as answering queries about the variables of interest, e.g., inferring classification labels of pixel patches or images. We investigate Multiple-Instance learning approach based on Hidden Conditional Random Fields for land-use classification using weakly labeled aerial images. The performance is evaluated using publicly available dataset that contains aerial imagery belonging to 21 land-use categories.
引用
收藏
页码:4376 / 4379
页数:4
相关论文
共 50 条
  • [1] Hidden Conditional Ordinal Random Fields for Sequence Classification
    Kim, Minyoung
    Pavlovic, Vladimir
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6322 : 51 - 65
  • [2] Conditional Random Fields for Land Use/Land Cover Classification and Complex Region Detection
    Can, Gulcan
    Firat, Orhan
    Vural, Fatos Tunay Yarman
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2012, 7626 : 216 - 224
  • [3] Hidden conditional random fields
    Quattoni, Ariadna
    Wang, Sybor
    Morency, Louis-Philippe
    Collins, Michael
    Darrell, Trevor
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (10) : 1848 - 1853
  • [4] AN ITERATIVE INFERENCE PROCEDURE APPLYING CONDITIONAL RANDOM FIELDS FOR SIMULTANEOUS CLASSIFICATION OF LAND COVER AND LAND USE
    Albert, L.
    Rottensteiner, F.
    Heipke, C.
    [J]. ISPRS GEOSPATIAL WEEK 2015, 2015, II-3 (W5): : 369 - 376
  • [5] Non-parametric Hidden Conditional Random Fields for Action Classification
    Raman, Natraj
    Maybank, S. J.
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3256 - 3263
  • [6] Aneuploidy prediction and tumor classification with heterogeneous hidden conditional random fields
    Barutcuoglu, Zafer
    Airoldi, Edoardo M.
    Dumeaux, Vanessa
    Schapire, Robert E.
    Troyanskaya, Olga G.
    [J]. BIOINFORMATICS, 2009, 25 (10) : 1307 - 1313
  • [7] A Land Use Classification Model Based on Conditional Random Fields and Attention Mechanism Convolutional Networks
    Zheng, Kang
    Wang, Haiying
    Qin, Fen
    Han, Zhigang
    [J]. REMOTE SENSING, 2022, 14 (11)
  • [8] The random boosting ensemble classifier for land-use image classification
    Wang, Hainan
    Miao, Yunqi
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29933 - 29947
  • [9] The random boosting ensemble classifier for land-use image classification
    Hainan Wang
    Yunqi Miao
    [J]. Multimedia Tools and Applications, 2018, 77 : 29933 - 29947
  • [10] Variational Infinite Hidden Conditional Random Fields
    Bousmalis, Konstantinos
    Zafeiriou, Stefanos
    Morency, Louis-Philippe
    Pantic, Maja
    Ghahramani, Zoubin
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) : 1917 - 1929