Modelling volatility of cryptocurrencies using Markov-Switching GARCH models

被引:74
|
作者
Caporale, Guglielmo Maria [1 ]
Zekokh, Timur [2 ]
机构
[1] Brunel Univ London, Uxbridge, Middx, England
[2] Natl Res Univ, Higher Sch Econ, Moscow, Russia
关键词
Cryptocurrencies; Volatility; Markov-switching; GARCH; VALUE-AT-RISK; CONDITIONAL HETEROSKEDASTICITY; INTEREST-RATES; BITCOIN; ELICITABILITY; RETURNS; INDEX;
D O I
10.1016/j.ribaf.2018.12.009
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper aims to select the best model or set of models for modelling volatility of the four most popular cryptocurrencies, i.e. Bitcoin, Ethereum, Ripple and Litecoin. More than 1000 GARCH models are fitted to the log returns of the exchange rates of each of these cryptocurrencies to estimate a one-step ahead prediction of Value-at-Risk (VaR) and Expected Shortfall (ES) on a rolling window basis. The best model or superior set of models is then chosen by backtesting VaR and ES as well as using a Model Confidence Set (MCS) procedure for their loss functions. The results imply that using standard GARCH models may yield incorrect VaR and ES predictions, and hence result in ineffective risk-management, portfolio optimisation, pricing of derivative securities etc. These could be improved by using instead the model specifications allowing for asymmetries and regime switching suggested by our analysis, from which both investors and regulators can benefit.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 50 条
  • [31] Maximum likelihood estimation of the Markov-switching GARCH model
    [J]. Augustyniak, Maciej, 1600, Elsevier B.V., Netherlands (76):
  • [32] Markov-switching ARCH models
    Francq, C
    Roussignol, M
    Zakoïan, JM
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10): : 921 - 924
  • [33] PROBABILISTIC PROPERTIES OF A MARKOV-SWITCHING PERIODIC GARCH PROCESS
    Aliat, Billel
    Hamdi, Faycal
    [J]. KYBERNETIKA, 2019, 55 (06) : 915 - 942
  • [34] A new particle filtering approach to estimate stochastic volatility models with Markov-switching
    Karame, Frederic
    [J]. ECONOMETRICS AND STATISTICS, 2018, 8 : 204 - 230
  • [35] Enhancing Portfolio Performance and VIX Futures Trading Timing with Markov-Switching GARCH Models
    De la Torre-Torres, Oscar V.
    Venegas-Martinez, Francisco
    Martinez-Torre-Enciso, Ma Isabel
    [J]. MATHEMATICS, 2021, 9 (02) : 1 - 23
  • [36] Continuous-Time Markov-Switching GARCH Process with Robust State Path Identification and Volatility Estimation
    Li, Yinan
    Liu, Fang
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 370 - 387
  • [37] Forecasting risk with Markov-switching GARCH models: A large-scale performance study
    Ardia, David
    Bluteau, Keven
    Boudt, Kris
    Catania, Leopoldo
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2018, 34 (04) : 733 - 747
  • [38] Infinite-State Markov-Switching for Dynamic Volatility
    Dufays, Arnaud
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2016, 14 (02) : 418 - 460
  • [39] Markov-switching generalized additive models
    Langrock, Roland
    Kneib, Thomas
    Glennie, Richard
    Michelot, Theo
    [J]. STATISTICS AND COMPUTING, 2017, 27 (01) : 259 - 270
  • [40] The functional central limit theorem for Markov-switching GARCH model
    Kwon, Dream
    Lee, Oesook
    [J]. ECONOMICS LETTERS, 2024, 238