The Gradient Projection Algorithm for Smooth Sets and Functions in Nonconvex Case

被引:6
|
作者
Balashov, Maxim V. [1 ]
机构
[1] Russian Acad Sci, VA Trapeznikov Inst Control Sci, 65 Profsoyuznaya St, Moscow 117997, Russia
基金
俄罗斯科学基金会;
关键词
Lipschitz continuous gradient; Proximal smoothness; Gradient projection algorithm; Metric projection; Nonconvex extremal problem; Lezanski-Polyak-Lojasiewicz condition; WEAK CONVEXITY;
D O I
10.1007/s11228-020-00550-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimization for a function with Lipschitz continuous gradient on a proximally smooth and smooth manifold in a finite dimensional Euclidean space. We consider the Lezanski-Polyak-Lojasiewicz (LPL) conditions in this problem of constrained optimization. We prove that the gradient projection algorithm for the problem converges with a linear rate when the LPL condition holds.
引用
收藏
页码:341 / 360
页数:20
相关论文
共 50 条
  • [21] A FISTA-type accelerated gradient algorithm for solving smooth nonconvex composite optimization problems
    Liang, Jiaming
    Monteiro, Renato D. C.
    Sim, Chee-Khian
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 79 (03) : 649 - 679
  • [22] THE METHOD OF GRADIENT DESCENT FOR MINIMIZING NONCONVEX FUNCTIONS
    IZMAILOV, AF
    TRETYAKOV, AA
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1994, 34 (03) : 287 - 299
  • [23] On the constrained minimization of smooth Kurdyka-Lojasiewicz functions with the scaled gradient projection method
    Prato, Marco
    Bonettini, Silvia
    Loris, Ignace
    Porta, Federica
    Rebegoldi, Simone
    [J]. 6TH INTERNATIONAL WORKSHOP ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS, 2016, 756
  • [24] On level sets of smooth functions
    Sukiasyan, G. A.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2010, 45 (04): : 197 - 206
  • [25] SMOOTH FUNCTIONS OF PLANE SETS
    DYNKIN, EM
    [J]. DOKLADY AKADEMII NAUK SSSR, 1973, 208 (01): : 25 - 27
  • [26] On level sets of smooth functions
    G. A. Sukiasyan
    [J]. Journal of Contemporary Mathematical Analysis, 2010, 45 : 197 - 206
  • [27] NONCONVEX POLYHEDRAL-SETS AND FUNCTIONS AND THEIR ANALYTICAL REPRESENTATION
    GOROKHOVIK, VV
    ZORKO, OI
    [J]. DOKLADY AKADEMII NAUK BELARUSI, 1995, 39 (01): : 5 - 9
  • [28] A unified single-loop alternating gradient projection algorithm for nonconvex–concave and convex–nonconcave minimax problems
    Zi Xu
    Huiling Zhang
    Yang Xu
    Guanghui Lan
    [J]. Mathematical Programming, 2023, 201 : 635 - 706
  • [29] Optimization with Quadratic Support Functions in Nonconvex Smooth Optimization
    Khamisov, O. V.
    [J]. NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776
  • [30] A CLASSOF NONMONOTONE CONJUGATE GRADIENT METHODSFOR NONCONVEX FUNCTIONS
    Liu Yun Wei ZengxinDept.ofMath.
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2002, (02) : 208 - 214