On the constrained minimization of smooth Kurdyka-Lojasiewicz functions with the scaled gradient projection method

被引:2
|
作者
Prato, Marco [1 ]
Bonettini, Silvia [2 ]
Loris, Ignace [3 ]
Porta, Federica [2 ]
Rebegoldi, Simone [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Via Campi 213-b, I-41125 Modena, Italy
[2] Univ Ferrara, Dipartimento Matemat & Informat, Via Saragat 1, I-44122 Ferrara, Italy
[3] Univ Libre Bruxelles, Dept Math, Blvd Triomphe, B-1050 Brussels, Belgium
关键词
ALGORITHMS;
D O I
10.1088/1742-6596/756/1/012001
中图分类号
O59 [应用物理学];
学科分类号
摘要
The scaled gradient projection (SGP) method is a first-order optimization method applicable to the constrained minimization of smooth functions and exploiting a scaling matrix multiplying the gradient and a variable steplength parameter to improve the convergence of the scheme. For a general nonconvex function, the limit points of the sequence generated by SGP have been proved to be stationary, while in the convex case and with some restrictions on the choice of the scaling matrix the sequence itself converges to a constrained minimum point. In this paper we extend these convergence results by showing that the SGP sequence converges to a limit point provided that the objective function satisfies the Kurdyka-Lojasiewicz property at each point of its domain and its gradient is Lipschitz continuous.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Kurdyka-Lojasiewicz Exponent via Inf-projection
    Yu, Peiran
    Li, Guoyin
    Pong, Ting Kei
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (04) : 1171 - 1217
  • [2] Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality
    Attouch, Hedy
    Bolte, Jerome
    Redont, Patrick
    Soubeyran, Antoine
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) : 438 - 457
  • [3] Deducing Kurdyka-Lojasiewicz exponent via inf-projection
    Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, Hong Kong
    不详
    [J]. arXiv,
  • [4] Kurdyka-Lojasiewicz Property of Zero-Norm Composite Functions
    Wu, Yuqia
    Pan, Shaohua
    Bi, Shujun
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (01) : 94 - 112
  • [5] CONVERGENCE ANALYSIS OF THE PROXIMAL GRADIENT METHOD IN THE PRESENCE OF THE KURDYKA-LOJASIEWICZ PROPERTY WITHOUT GLOBAL LIPSCHITZ ASSUMPTIONS
    Jia, Xiaoxi
    Kanzow, Christian
    Mehlitz, Patrick
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (04) : 3038 - 3056
  • [6] CONVERGENCE ANALYSIS OF THE PROXIMAL GRADIENT METHOD IN THE PRESENCE OF THE KURDYKA-LOJASIEWICZ PROPERTY WITHOUT GLOBAL LIPSCHITZ ASSUMPTIONS
    Jia, Xiaoxi
    Kanzow, Christian
    Mehlitz, Patrick
    [J]. SIAM Journal on Optimization, 2023, 33 : 3038 - 3056
  • [7] Kurdyka-Lojasiewicz Property of Zero-Norm Composite Functions (vol 188, pg 94, 2021)
    Wu, Yuqia
    Pan, Shaohua
    Bi, Shujun
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 190 (01) : 339 - 342
  • [8] A scaled gradient projection method for constrained image deblurring
    Bonettini, S.
    Zanella, R.
    Zanni, L.
    [J]. INVERSE PROBLEMS, 2009, 25 (01)
  • [9] A Scaled Gradient Projection Method for Minimization over the Stiefel Manifold
    Oviedo, Harry
    Dalmau, Oscar
    [J]. ADVANCES IN SOFT COMPUTING, MICAI 2019, 2019, 11835 : 239 - 250
  • [10] Kurdyka-Lojasiewicz Inequality and Error Bounds of D-Gap Functions for Nonsmooth and Nonmonotone Variational Inequality Problems
    Li, M.H.
    Meng, K.W.
    Yang, X.Q.
    [J]. arXiv, 2022,