Causal inference with multiple time series: principles and problems

被引:80
|
作者
Eichler, Michael [1 ]
机构
[1] Maastricht Univ, Dept Quantitat Econ, NL-6200 MD Maastricht, Netherlands
关键词
causal identification; Granger causality; causal effect; spurious causality; latent variables; impulse response function; GRANGER CAUSALITY; EFFECTIVE CONNECTIVITY; INFORMATION-FLOW; DIAGRAMS; SYSTEMS; NETWORK;
D O I
10.1098/rsta.2011.0613
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
I review the use of the concept of Granger causality for causal inference from time-series data. First, I give a theoretical justification by relating the concept to other theoretical causality measures. Second, I outline possible problems with spurious causality and approaches to tackle these problems. Finally, I sketch an identification algorithm that learns causal time-series structures in the presence of latent variables. The description of the algorithm is nontechnical and thus accessible to applied scientists who are interested in adopting the method.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Causal inference for time series analysis: problems, methods and evaluation
    Moraffah, Raha
    Sheth, Paras
    Karami, Mansooreh
    Bhattacharya, Anchit
    Wang, Qianru
    Tahir, Anique
    Raglin, Adrienne
    Liu, Huan
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (12) : 3041 - 3085
  • [2] Causal inference for time series analysis: problems, methods and evaluation
    Raha Moraffah
    Paras Sheth
    Mansooreh Karami
    Anchit Bhattacharya
    Qianru Wang
    Anique Tahir
    Adrienne Raglin
    Huan Liu
    [J]. Knowledge and Information Systems, 2021, 63 : 3041 - 3085
  • [3] Causal inference for time series
    Jakob Runge
    Andreas Gerhardus
    Gherardo Varando
    Veronika Eyring
    Gustau Camps-Valls
    [J]. Nature Reviews Earth & Environment, 2023, 4 : 487 - 505
  • [4] Causal inference for time series
    Runge, Jakob
    Gerhardus, Andreas
    Varando, Gherardo
    Eyring, Veronika
    Camps-Valls, Gustau
    [J]. NATURE REVIEWS EARTH & ENVIRONMENT, 2023, 4 (07) : 487 - 505
  • [5] Causal Inference - Time Series
    Asesh, Aishwarya
    [J]. DIGITAL INTERACTION AND MACHINE INTELLIGENCE, MIDI 2021, 2022, 440 : 43 - 51
  • [6] Publisher Correction: Causal inference for time series
    Jakob Runge
    Andreas Gerhardus
    Gherardo Varando
    Veronika Eyring
    Gustau Camps-Valls
    [J]. Nature Reviews Earth & Environment, 2023, 4 (8) : 596 - 596
  • [7] Nonparametric causal inference for bivariate time series
    McCracken, James M.
    Weigel, Robert S.
    [J]. PHYSICAL REVIEW E, 2016, 93 (02)
  • [8] Causal Inference in Time Series via Supervised Learning
    Chikahara, Yoichi
    Fujino, Akinori
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2042 - 2048
  • [9] Machine learning for time series: from forecasting to causal inference
    Bontempi, Gianluca
    [J]. PROCEEDINGS OF THE 12TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE, SETN 2022, 2022,
  • [10] Causal inference of multivariate time series in complex industrial systems
    Liang, Xiaoxue
    Hao, Kuangrong
    Chen, Lei
    Cai, Xin
    Hao, Lingguang
    [J]. ADVANCED ENGINEERING INFORMATICS, 2024, 59