STATISTICS OF EXTREME SPACINGS IN DETERMINANTAL RANDOM POINT PROCESSES

被引:10
|
作者
Soshnikov, Alexander [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
Determinantal random point processes; cluster functions; Poisson statistics;
D O I
10.17323/1609-4514-2005-5-3-705-719
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study determinantal translation-invariant random point processes on the real line. Under some technical assumptions on the correlation kernel, we prove that the smallest nearest spacings in a large interval have Poisson statistics as the length of the interval goes to infinity.
引用
收藏
页码:705 / 719
页数:15
相关论文
共 50 条
  • [31] On simulation of continuous determinantal point processes
    Frédéric Lavancier
    Ege Rubak
    Statistics and Computing, 2023, 33
  • [32] Determinantal Point Processes for Image Processing
    Launay, Claire
    Desolneux, Agnes
    Galerne, Bruno
    SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (01): : 304 - 348
  • [33] Conditional Measures of Determinantal Point Processes
    Bufetov, A. I.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2020, 54 (01) : 7 - 20
  • [34] Difference operators and determinantal point processes
    Grigori Olshanski
    Functional Analysis and Its Applications, 2008, 42
  • [35] Determinantal Point Processes for Machine Learning
    Kulesza, Alex
    Taskar, Ben
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 5 (2-3): : 123 - 286
  • [36] Tensorized Determinantal Point Processes for Recommendation
    Warlop, Romain
    Mary, Jeremie
    Gartrell, Mike
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1605 - 1615
  • [37] Gaussian limit for determinantal random point fields
    Soshnikov, A
    ANNALS OF PROBABILITY, 2002, 30 (01): : 171 - 187
  • [38] Linear systems and determinantal random point fields
    Blower, Gordon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (01) : 311 - 334
  • [39] Determinantal Point Processes and Fermion Quasifree States
    Grigori Olshanski
    Communications in Mathematical Physics, 2020, 378 : 507 - 555
  • [40] Learning Determinantal Point Processes with Moments and Cycles
    Urschel, John
    Brunel, Victor-Emmanuel
    Moitra, Ankur
    Rigollet, Philippe
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70