STATISTICS OF EXTREME SPACINGS IN DETERMINANTAL RANDOM POINT PROCESSES

被引:10
|
作者
Soshnikov, Alexander [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
Determinantal random point processes; cluster functions; Poisson statistics;
D O I
10.17323/1609-4514-2005-5-3-705-719
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study determinantal translation-invariant random point processes on the real line. Under some technical assumptions on the correlation kernel, we prove that the smallest nearest spacings in a large interval have Poisson statistics as the length of the interval goes to infinity.
引用
收藏
页码:705 / 719
页数:15
相关论文
共 50 条
  • [21] Determinantal point processes for coresets
    Tremblay, Nicolas
    Barthelmé, Simon
    Amblard, Pierre-Olivier
    Journal of Machine Learning Research, 2019, 20
  • [22] Determinantal identity for multilevel ensembles and finite determinantal point processes
    J. Harnad
    A. Yu. Orlov
    Analysis and Mathematical Physics, 2012, 2 : 105 - 121
  • [23] Determinantal identity for multilevel ensembles and finite determinantal point processes
    Harnad, J.
    Orlov, A. Yu.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (02) : 105 - 121
  • [24] Quantifying repulsiveness of determinantal point processes
    Biscio, Christophe Ange Napoleon
    Lavancier, Frederic
    BERNOULLI, 2016, 22 (04) : 2001 - 2028
  • [25] Difference operators and determinantal point processes
    Olshanski, Grigori
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2008, 42 (04) : 317 - 329
  • [26] Determinantal point processes in the flat limit
    Barthelme, Simon
    Tremblay, Nicolas
    Usevich, Konstantin
    Amblard, Pierre-Olivier
    BERNOULLI, 2023, 29 (02) : 957 - 983
  • [27] Learning Nonsymmetric Determinantal Point Processes
    Gartrell, Mike
    Brunel, Victor-Emmanuel
    Dohmatob, Elvis
    Krichene, Syrine
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [28] On simulation of continuous determinantal point processes
    Lavancier, Frederic
    Rubak, Ege
    STATISTICS AND COMPUTING, 2023, 33 (05)
  • [29] MONTE CARLO WITH DETERMINANTAL POINT PROCESSES
    Bardenet, Remi
    Hardy, Adrien
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (01): : 368 - 417
  • [30] Conditional Measures of Determinantal Point Processes
    A. I. Bufetov
    Functional Analysis and Its Applications, 2020, 54 : 7 - 20