Paraoxonase 2 protects against acute myocardial ischemia-reperfusion injury by modulating mitochondrial function and oxidative stress via the PI3K/Akt/GSK-3β RISK pathway

被引:50
|
作者
Sulaiman, Dawoud [1 ,2 ]
Li, Jingyuan [3 ]
Devarajan, Asokan [1 ]
Cunningham, Christine Marie [3 ]
Li, Min [3 ]
Fishbein, Gregory A. [4 ]
Fogelman, Alan M. [1 ]
Eghbali, Mansoureh [3 ]
Reddy, Srinivasa T. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Med, Div Cardiol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Mol Toxicol Interdept Degree Program, Los Angeles, CA USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Anesthesiol, Div Mol Med, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
关键词
Myocardial infarction; Ischemia-reperfusion injury; Paraoxonase; 2; Cardiomyocytes; Mitochondria; Permeability transition pore; Calcium; Reactive oxygen species; RISK pathway (PI3K/Akt/GSK-3 beta); PERMEABILITY TRANSITION PORE; HEART-DISEASE RISK; CALCIUM HOMEOSTASIS; POLYMORPHISMS; PON2; ATHEROSCLEROSIS; ASSOCIATION; GSK3-BETA; INFECTION; APOPTOSIS;
D O I
10.1016/j.yjmcc.2019.02.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: To investigate the novel role of Paraoxonase 2 (PON2) in modulating acute myocardial ischemia-reperfusion injury (IRI). Approach: IRI was induced both in vivo and ex vivo in male, C57BL6/J (WT) and PON2-deficient (PON-def) mice. In addition, in vitro hypoxia-reoxygenation injury (HRI) was induced in H9c2 cells expressing empty vector (H9c2-EV) or human PON2 (H9c2-hPON2) +/- LY294002 (a potent PI3K inhibitor). Infarct size, PON2 gene expression, mitochondrial calcium retention capacity (CRC), reactive oxygen species (ROS) generation, mitochondrial membrane potential, CHOP and pGSK-3 beta protein levels, and cell apoptosis were evaluated. Results: PON2 gene expression is upregulated in WT mice following in vivo IRI. PON2-def mice exhibit a 2-fold larger infarct, increased CHOP levels, and reduced pGSK-3 beta levels compared to WT controls. Global cardiac mitochondria isolated from PON2-def mice exhibit reduced CRC and increased ROS production. Cardiomyocytes isolated from PON2-def mice subjected to ex vivo IRI have mitochondria with reduced CRC (also seen under non-IRI conditions), and increased ROS generation and apoptosis compared to WT controls. PON2 knockdown in H9c2 cells subjected to HRI leads to an increase in mitochondrial membrane depolarization. H9c2-hPON2 cells exhibit i) improvement in mitochondria] membrane potential, pGSK-3 beta levels and mitochondrial CRC, and ii) decrease in CHOP levels, mitochondrial ROS generation and cell apoptosis, when compared to H9c2-EV controls. Treatment with LY294002 resulted in a decrease of mitochondrial CRC and increase in mitochondrial ROS production and cell apoptosis in the H9c2-hPON2 group versus H9c2-EV controls. Conclusion: PON2 protects against acute myocardial IRI by reducing mitochondrial dysfunction and oxidative stress in cardiomyocytes via activation of the PI3K/AK/GSK-3 beta RISK pathway.
引用
收藏
页码:154 / 164
页数:11
相关论文
共 50 条
  • [41] Activation of FXR Protects Against Liver Ischemia and Reperfusion Injury (IRI) in Mice Via the PI 3-Kinase/Akt (PI3K/Akt) Pathway
    Zhang, Jiang
    Liu, Xiaoqiang
    Li, Dawei
    Dai, Huijuan
    Lin, Weiwei
    Zhang, Jianjun
    Lu, Tianfei
    Xia, Qiang
    TRANSPLANTATION, 2015, 99 : 269 - 269
  • [42] Activation of FXR Protects Against Liver Ischemia and Reperfusion Injury (IRI) in Mice Via the PI 3-Kinase/Akt (PI3K/Akt) Pathway
    Zhang, J.
    Liu, X.
    Li, D.
    Dai, H.
    Zhang, J.
    Lu, T.
    Xia, Q.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2015, 15
  • [43] Aucubin protects against myocardial ischemia-reperfusion injury via activation of the AKT/ STAT3 pathway
    Wang, Yu-Ping
    Xu, Xiao-Dan
    Xu, Xi
    Zhu, Lin
    Wang, Chang
    Ren, Kun
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 412
  • [44] Vinpocetine Protects Against Cerebral Ischemia-Reperfusion Injury by Targeting Astrocytic Connexin43 via the PI3K/AKT Signaling Pathway
    Zhao, Mingming
    Hou, Shuai
    Feng, Liangshu
    Shen, Pingping
    Nan, Di
    Zhang, Yunhai
    Wang, Famin
    Ma, Di
    Feng, Jiachun
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [45] Tamibarotene Improves Hippocampus Injury Induced by Focal Cerebral Ischemia-Reperfusion via Modulating PI3K/Akt Pathway in Rats
    Tian, Xiaocui
    An, Ruidi
    Luo, Yujie
    Li, Minghang
    Xu, Lu
    Dong, Zhi
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2019, 28 (07): : 1832 - 1840
  • [46] Mild hypothermia pretreatment protects against liver ischemia reperfusion injury via the PI3K/AKT/FOXO3a pathway
    Xiao, Qi
    Ye, Qifa
    Wang, Wei
    Xiao, Jiansheng
    Fu, Biqi
    Xia, Zhiping
    Zhang, Xingjian
    Liu, Zhongzhong
    Zeng, Xianpeng
    MOLECULAR MEDICINE REPORTS, 2017, 16 (05) : 7520 - 7526
  • [47] MiR-506 alleviates myocardial ischemia-reperfusion injury via targeting PI3K/AKT
    Zhang, M.
    Wang, J-Y
    Li, L.
    Li, G-M
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (24) : 12896 - 12903
  • [48] Intralipid Induces Cardioprotection against Ischemia-Reperfusion Injury by Inhibiting the Mitochondrial Permeability Transition Pore Opening Via the PI3K/AKT Pathway
    Rahman, Siamak
    Bopassa, Jean Chrisostome
    Li, Jingyuan
    Umar, Soban
    Ciobotaru, Andrea
    Partownavid, Parisa
    Eghbali, Mansoureh
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 716A - 717A
  • [49] Puerarin protects the fatty liver from ischemia-reperfusion injury by regulating the PI3K/AKT signaling pathway
    Yang, Faji
    Gao, Hengjun
    Niu, Zheyu
    Ni, Qingqiang
    Zhu, Huaqiang
    Wang, Jianlu
    Lu, Jun
    BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 2024, 57
  • [50] Sevoflurane Postconditioning Protects Rat Hearts against Ischemia-Reperfusion Injury via the Activation of PI3K/AKT/mTOR Signaling
    Jing Zhang
    Chen Wang
    Shuchun Yu
    Zhenzhong Luo
    Yong Chen
    Qin Liu
    Fuzhou Hua
    Guohai Xu
    Peng Yu
    Scientific Reports, 4