Paraoxonase 2 protects against acute myocardial ischemia-reperfusion injury by modulating mitochondrial function and oxidative stress via the PI3K/Akt/GSK-3β RISK pathway

被引:50
|
作者
Sulaiman, Dawoud [1 ,2 ]
Li, Jingyuan [3 ]
Devarajan, Asokan [1 ]
Cunningham, Christine Marie [3 ]
Li, Min [3 ]
Fishbein, Gregory A. [4 ]
Fogelman, Alan M. [1 ]
Eghbali, Mansoureh [3 ]
Reddy, Srinivasa T. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Med, Div Cardiol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Mol Toxicol Interdept Degree Program, Los Angeles, CA USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Anesthesiol, Div Mol Med, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
关键词
Myocardial infarction; Ischemia-reperfusion injury; Paraoxonase; 2; Cardiomyocytes; Mitochondria; Permeability transition pore; Calcium; Reactive oxygen species; RISK pathway (PI3K/Akt/GSK-3 beta); PERMEABILITY TRANSITION PORE; HEART-DISEASE RISK; CALCIUM HOMEOSTASIS; POLYMORPHISMS; PON2; ATHEROSCLEROSIS; ASSOCIATION; GSK3-BETA; INFECTION; APOPTOSIS;
D O I
10.1016/j.yjmcc.2019.02.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: To investigate the novel role of Paraoxonase 2 (PON2) in modulating acute myocardial ischemia-reperfusion injury (IRI). Approach: IRI was induced both in vivo and ex vivo in male, C57BL6/J (WT) and PON2-deficient (PON-def) mice. In addition, in vitro hypoxia-reoxygenation injury (HRI) was induced in H9c2 cells expressing empty vector (H9c2-EV) or human PON2 (H9c2-hPON2) +/- LY294002 (a potent PI3K inhibitor). Infarct size, PON2 gene expression, mitochondrial calcium retention capacity (CRC), reactive oxygen species (ROS) generation, mitochondrial membrane potential, CHOP and pGSK-3 beta protein levels, and cell apoptosis were evaluated. Results: PON2 gene expression is upregulated in WT mice following in vivo IRI. PON2-def mice exhibit a 2-fold larger infarct, increased CHOP levels, and reduced pGSK-3 beta levels compared to WT controls. Global cardiac mitochondria isolated from PON2-def mice exhibit reduced CRC and increased ROS production. Cardiomyocytes isolated from PON2-def mice subjected to ex vivo IRI have mitochondria with reduced CRC (also seen under non-IRI conditions), and increased ROS generation and apoptosis compared to WT controls. PON2 knockdown in H9c2 cells subjected to HRI leads to an increase in mitochondrial membrane depolarization. H9c2-hPON2 cells exhibit i) improvement in mitochondria] membrane potential, pGSK-3 beta levels and mitochondrial CRC, and ii) decrease in CHOP levels, mitochondrial ROS generation and cell apoptosis, when compared to H9c2-EV controls. Treatment with LY294002 resulted in a decrease of mitochondrial CRC and increase in mitochondrial ROS production and cell apoptosis in the H9c2-hPON2 group versus H9c2-EV controls. Conclusion: PON2 protects against acute myocardial IRI by reducing mitochondrial dysfunction and oxidative stress in cardiomyocytes via activation of the PI3K/AK/GSK-3 beta RISK pathway.
引用
收藏
页码:154 / 164
页数:11
相关论文
共 50 条
  • [21] 17β-Estradiol protects the liver against warm ischemia-reperfusion injury through the Akt/GSK-3β pathway
    Shao, Longjiang
    Sun, Ding
    Liu, Yueyu
    Zhang, Weigang
    Qian, Haixin
    Qin, Lei
    Yang, Xiaohua
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2019, 12 (01): : 625 - 631
  • [22] Tetramethylpyrazine exerts a protective effect against injury from acute myocardial ischemia by regulating the PI3K/Akt/GSK-3β signaling pathway
    Qing Yang
    Dan Dan Huang
    Da Guang Li
    Bo Chen
    Ling Min Zhang
    Cui Ling Yuan
    Hong Hong Huang
    Cellular & Molecular Biology Letters, 2019, 24
  • [23] Tetramethylpyrazine exerts a protective effect against injury from acute myocardial ischemia by regulating the PI3K/Akt/GSK-3 signaling pathway
    Yang, Qing
    Huang, Dan Dan
    Li, Da Guang
    Chen, Bo
    Zhang, Ling Min
    Yuan, Cui Ling
    Huang, Hong Hong
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2019, 24 (1)
  • [24] Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway
    Tang, Lu
    Mo, Yingli
    Li, Yunpeng
    Zhong, Yongkang
    He, Shangfei
    Zhang, Ya
    Tang, Ying
    Fu, Shanshan
    Wang, Xianbao
    Chen, Aihua
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 486 (03) : 774 - 780
  • [25] Astragaloside IV alleviates myocardial ischemia-reperfusion injury in rats through regulating PI3K/AKT/GSK-3β signaling pathways
    Wei, Dajun
    Xu, Hongjie
    Gai, Xiaodong
    Jiang, Ying
    ACTA CIRURGICA BRASILEIRA, 2019, 34 (07)
  • [26] Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway
    Wang, Jun-Kuan
    Yu, Li-Na
    Zhang, Feng-Jiang
    Yang, Mei-Juan
    Yu, Jing
    Yan, Min
    Chen, Gao
    BRAIN RESEARCH, 2010, 1357 : 142 - 151
  • [27] Dexmedetomidine protects against lung ischemia-reperfusion injury by the PI3K/Akt/HIF-1α signaling pathway
    Zhang, Wei
    Zhang, Jia-Qiang
    Meng, Fan-Min
    Xue, Fu-Shan
    JOURNAL OF ANESTHESIA, 2016, 30 (05) : 826 - 833
  • [28] Tanshinone IIA protects against myocardial ischemia reperfusion injury by activating the PI3K/Akt/mTOR signaling pathway
    Li, Qiang
    Shen, Li
    Wang, Zhen
    Jiang, Hai-Peng
    Liu, Li-Xia
    BIOMEDICINE & PHARMACOTHERAPY, 2016, 84 : 106 - 114
  • [29] Gypenoside Protects against Myocardial Ischemia-Reperfusion Injury by Inhibiting Cardiomyocytes Apoptosis via Inhibition of CHOP Pathway and Activation of PI3K/Akt Pathway In Vivo and In Vitro
    Yu, Haijie
    Zhang, Haishan
    Zhao, Weihua
    Guo, Liang
    Li, Xueyuan
    Li, Yang
    Zhang, Xingang
    Sun, Yingxian
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2016, 39 (01) : 123 - 136
  • [30] Cinnamaldehyde protects donor heart from cold ischemia-reperfusion injury via the PI3K/AKT/mTOR pathway
    Lan, Hongwen
    Zheng, Qiang
    Wang, Kan
    Li, Chenghao
    Xiong, Tixiusi
    Shi, Jiawei
    Dong, Nianguo
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 165