An Automated Method of Segmentation for Tumor Detection by Neutrosophic Sets and Morphological Operations Using MR Images

被引:0
|
作者
Kaur, Gursangeet [1 ]
Kaur, Hardeep [1 ]
机构
[1] Coll Engn & Tech, GZS Campus, Bathinda, India
关键词
Brain tumor; segmentation; neutrosophic; filters; watershed algorithm;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain tumor is the most life undermining sickness and its recognition is the most challenging task for radio logistics by manual detection due to varieties in size, shape and location and sort of tumor. So, detection ought to be quick and precise and can be obtained by automated segmentation methods on MR images. In this paper, neutrosophic sets based segmentation is performed to detect the tumor. MRI is an intense apparatus over CT to analyze the interior segments of the body and the tumor. Tumor is detected and true, false and indeterminacy values of tumor are determined by this technique and the proposed method produce the beholden results.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 50 条
  • [21] Segmentation of MR Brain Images for Tumor Extraction Using Fuzzy
    Vishnuvarthanan, Govindaraj
    Rajasekaran, Murugan Pallikonda
    [J]. CURRENT MEDICAL IMAGING, 2013, 9 (01) : 2 - 6
  • [22] Automated segmentation of MR images of brain tumors
    Kaus, MR
    Warfield, SK
    Nabavi, A
    Black, PM
    Jolesz, FA
    Kikinis, R
    [J]. RADIOLOGY, 2001, 218 (02) : 586 - 591
  • [23] Automated Detection of Red Lesions in the Presence of Blood Vessels in Retinal Fundus Images using Morphological Operations
    Kaur, Navkiran
    Kaur, Jasmeen
    Accharya, Mausumi
    Gupta, Sheifali
    [J]. PROCEEDINGS OF THE FIRST IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, INTELLIGENT CONTROL AND ENERGY SYSTEMS (ICPEICES 2016), 2016,
  • [24] Automated segmentation of endometrial cancer on MR images using deep learning
    Erlend Hodneland
    Julie A. Dybvik
    Kari S. Wagner-Larsen
    Veronika Šoltészová
    Antonella Z. Munthe-Kaas
    Kristine E. Fasmer
    Camilla Krakstad
    Arvid Lundervold
    Alexander S. Lundervold
    Øyvind Salvesen
    Bradley J. Erickson
    Ingfrid Haldorsen
    [J]. Scientific Reports, 11
  • [25] AUTOMATED SEGMENTATION OF THE MENISCI FROM MR IMAGES
    Fripp, Jurgen
    Bourgeat, Pierrick
    Engstrom, Craig
    Ourselin, Sebastien
    Crozier, Stuart
    Salvado, Olivier
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 510 - 513
  • [26] Automated segmentation of multispectral brain MR images
    Andersen, AH
    Zhang, ZM
    Avison, MJ
    Gash, DM
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2002, 122 (01) : 13 - 23
  • [27] SELECTION OF MR-IMAGES FOR AUTOMATED SEGMENTATION
    MCCLAIN, KJ
    ZHU, YQ
    HAZLE, JD
    [J]. JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1995, 5 (05): : 485 - 492
  • [28] Automated segmentation of endometrial cancer on MR images using deep learning
    Hodneland, Erlend
    Dybvik, Julie A.
    Wagner-Larsen, Kari S.
    Solteszova, Veronika
    Munthe-Kaas, Antonella Z.
    Fasmer, Kristine E.
    Krakstad, Camilla
    Lundervold, Arvid
    Lundervold, Alexander S.
    Salvesen, Oyvind
    Erickson, Bradley J.
    Haldorsen, Ingfrid
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [29] Image completion based on segmentation using neutrosophic sets
    Talouki, Amanna Ghanbari
    Koochari, Abbas
    Edalatpanah, S. Ahmad
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [30] Segmentation of ultrasound breast images based on a neutrosophic method
    Zhang, Ming
    Zhang, Ling
    Cheng, Heng-Da
    [J]. OPTICAL ENGINEERING, 2010, 49 (11)