Automated segmentation of endometrial cancer on MR images using deep learning

被引:37
|
作者
Hodneland, Erlend [1 ,2 ,4 ]
Dybvik, Julie A. [2 ,3 ]
Wagner-Larsen, Kari S. [2 ,3 ]
Solteszova, Veronika [1 ,2 ]
Munthe-Kaas, Antonella Z. [2 ,4 ]
Fasmer, Kristine E. [2 ,3 ]
Krakstad, Camilla [5 ,6 ]
Lundervold, Arvid [2 ,7 ]
Lundervold, Alexander S. [2 ,8 ]
Salvesen, Oyvind [9 ]
Erickson, Bradley J. [10 ]
Haldorsen, Ingfrid [2 ,3 ]
机构
[1] NORCE Norwegian Res Ctr, Bergen, Norway
[2] Haukeland Hosp, MMIV Mohn Med Imaging & Visualizat Ctr, Dept Radiol, Bergen, Norway
[3] Univ Bergen, Dept Clin Med, Sect Radiol, Bergen, Norway
[4] Univ Bergen, Dept Math, Bergen, Norway
[5] Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen, Norway
[6] Haukeland Hosp, Dept Obstet & Gynecol, Bergen, Norway
[7] Univ Bergen, Dept Biomed, Bergen, Norway
[8] Western Norway Univ Appl Sci, Bergen, Norway
[9] Norwegian Univ Sci & Technol, Dept Publ Hlth & Gen Practice, Trondheim, Norway
[10] Mayo Clin, Dept Radiol, Rochester, MN USA
关键词
LESION;
D O I
10.1038/s41598-020-80068-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, p=0.06). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, p=0.08, p=0.60, and p=0.05). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Automated segmentation of endometrial cancer on MR images using deep learning
    Erlend Hodneland
    Julie A. Dybvik
    Kari S. Wagner-Larsen
    Veronika Šoltészová
    Antonella Z. Munthe-Kaas
    Kristine E. Fasmer
    Camilla Krakstad
    Arvid Lundervold
    Alexander S. Lundervold
    Øyvind Salvesen
    Bradley J. Erickson
    Ingfrid Haldorsen
    Scientific Reports, 11
  • [2] Automatic Prostate Segmentation using Deep Learning and MR Images
    Yuan, Y.
    Qin, W.
    Buyyounouski, M. K.
    Hancock, S. L.
    Bagshaw, H. P.
    Han, B.
    Xing, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : E379 - E379
  • [3] Automated breast cancer segmentation and classification in mammogram images using deep learning approach
    Dhanalaxmi, B.
    Venkatesh, N.
    Raju, Yeligeti
    Naik, G. Jagan
    Rao, Channapragada Rama Seshagiri
    Tulasi, V. Prema
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2025, 47 (02)
  • [4] Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning
    Lin, Jinghui
    Mou, Lei
    Yan, Qifeng
    Ma, Shaodong
    Yue, Xingyu
    Zhou, Shengjun
    Lin, Zhiqing
    Zhang, Jiong
    Liu, Jiang
    Zhao, Yitian
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [5] Brain Tumor Detection and Segmentation in MR Images Using Deep Learning
    Sajid, Sidra
    Hussain, Saddam
    Sarwar, Amna
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (11) : 9249 - 9261
  • [6] Breast tissue segmentation in MR images using deep-learning
    Forghani, Y.
    Timotoe, R.
    Figueiredo, M.
    Marques, T.
    Batista, E.
    Cordoso, F.
    Cardoso, M. J.
    Santinha, J.
    Gouveia, P.
    EUROPEAN JOURNAL OF CANCER, 2024, 200 : 116 - 116
  • [7] Brain Tumor Detection and Segmentation in MR Images Using Deep Learning
    Sidra Sajid
    Saddam Hussain
    Amna Sarwar
    Arabian Journal for Science and Engineering, 2019, 44 : 9249 - 9261
  • [8] Automated Segmentation of Microvessels in Intravascular OCT Images Using Deep Learning
    Lee, Juhwan
    Kim, Justin N. N.
    Gomez-Perez, Lia
    Gharaibeh, Yazan
    Motairek, Issam
    Pereira, Gabriel T. R.
    Zimin, Vladislav N. N.
    Dallan, Luis A. P.
    Hoori, Ammar
    Al-Kindi, Sadeer
    Guagliumi, Giulio
    Bezerra, Hiram G. G.
    Wilson, David L. L.
    BIOENGINEERING-BASEL, 2022, 9 (11):
  • [9] Automated Segmentation of Brain Tumor MRI Images Using Deep Learning
    Rajendran, Surendran
    Rajagopal, Suresh Kumar
    Thanarajan, Tamilvizhi
    Shankar, K.
    Kumar, Sachin
    Alsubaie, Najah M.
    Ishak, Mohamad Khairi
    Mostafa, Samih M.
    IEEE ACCESS, 2023, 11 : 64758 - 64768
  • [10] Automated recognition and segmentation of lung cancer cytological images based on deep learning
    Wang, Qingyang
    Luo, Yazhi
    Zhao, Ying
    Wang, Shuhao
    Niu, Yiru
    Di, Jinxi
    Guo, Jia
    Lan, Guorong
    Yang, Lei
    Mao, Yu Shan
    Tu, Yuan
    Zhong, Dingrong
    Zhang, Pei
    PLOS ONE, 2025, 20 (01):