Brain Tumor Detection and Segmentation in MR Images Using Deep Learning

被引:0
|
作者
Sidra Sajid
Saddam Hussain
Amna Sarwar
机构
[1] University of Engineering and Technology Taxila,Department of Software Engineering
[2] University of Lahore,Department of Computer Science and IT
关键词
Brain tumor segmentation; Gliomas segmentation; Deep learning; CNN; MRI;
D O I
暂无
中图分类号
学科分类号
摘要
Gliomas are the most infiltrative and life-threatening brain tumors with exceptionally quick development. Gliomas segmentation using computer-aided diagnosis is a challenging task, due to irregular shape and diffused boundaries of tumor with the surrounding area. Magnetic resonance imaging (MRI) is the most widely used method for imaging structures of interest in human brain. In this study, a deep learning-based method that uses different modalities of MRI is presented for the segmentation of brain tumor. The proposed hybrid convolutional neural network architecture uses patch-based approach and takes both local and contextual information into account, while predicting output label. The proposed network deals with over-fitting problem by utilizing dropout regularizer alongside batch normalization, whereas data imbalance problem is dealt with by using two-phase training procedure. The proposed method contains a preprocessing step, in which images are normalized and bias field corrected, a feed-forward pass through a CNN and a post-processing step, which is used to remove small false positives around the skull portion. The proposed method is validated on BRATS 2013 dataset, where it achieves scores of 0.86, 0.86 and 0.91 in terms of dice score, sensitivity and specificity for whole tumor region, improving results compared to the state-of-the-art techniques.
引用
收藏
页码:9249 / 9261
页数:12
相关论文
共 50 条
  • [1] Brain Tumor Detection and Segmentation in MR Images Using Deep Learning
    Sajid, Sidra
    Hussain, Saddam
    Sarwar, Amna
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (11) : 9249 - 9261
  • [2] A Deep Analysis of Brain Tumor Detection from MR Images Using Deep Learning Networks
    Mahmud, Md Ishtyaq
    Mamun, Muntasir
    Abdelgawad, Ahmed
    [J]. ALGORITHMS, 2023, 16 (04)
  • [3] Brain tumor detection and segmentation using deep learning
    Ahsan, Rafia
    Shahzadi, Iram
    Najeeb, Faisal
    Omer, Hammad
    [J]. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2024,
  • [4] Deep Learning-Based Segmentation Method for Brain Tumor in MR Images
    Xiao, Zhe
    Huang, Ruohan
    Ding, Yi
    Lan, Tian
    Dong, RongFeng
    Qin, Zhiguang
    Zhang, Xinjie
    Wang, Wei
    [J]. 2016 IEEE 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2016,
  • [5] Deep learning based enhanced tumor segmentation approach for MR brain images
    Mittal, Mamta
    Goyal, Lalit Mohan
    Kaur, Sumit
    Kaur, Iqbaldeep
    Verma, Amit
    Hemanth, D. Jude
    [J]. APPLIED SOFT COMPUTING, 2019, 78 : 346 - 354
  • [6] On the Performance of Deep Transfer Learning Networks for Brain Tumor Detection Using MR Images
    Ahmad, Saif
    Choudhury, Pallab K.
    [J]. IEEE ACCESS, 2022, 10 : 59099 - 59114
  • [7] Brain Tumor Segmentation Using Deep Learning on MRI Images
    Mostafa, Almetwally M.
    Zakariah, Mohammed
    Aldakheel, Eman Abdullah
    [J]. DIAGNOSTICS, 2023, 13 (09)
  • [8] Automatic Brain Tumor Detection and Segmentation in MR Images
    Zeljkovic, V.
    Druzgalski, C.
    Zhang, Y.
    Zhu, Z.
    Xu, Z.
    Zhang, D.
    Mayorga, P.
    [J]. 2014 PAN AMERICAN HEALTH CARE EXCHANGES (PAHCE), 2014,
  • [9] Automated Segmentation of Brain Tumor MRI Images Using Deep Learning
    Rajendran, Surendran
    Rajagopal, Suresh Kumar
    Thanarajan, Tamilvizhi
    Shankar, K.
    Kumar, Sachin
    Alsubaie, Najah M.
    Ishak, Mohamad Khairi
    Mostafa, Samih M.
    [J]. IEEE ACCESS, 2023, 11 : 64758 - 64768
  • [10] Deep Learning for Brain Tumor Segmentation using Magnetic Resonance Images
    Gupta, Surbhi
    Gupta, Manoj
    [J]. 2021 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2021, : 97 - 102