Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information

被引:38
|
作者
Kim, Seokyeon [1 ]
Jeong, Seongmin [1 ]
Woo, Insoo [3 ]
Jang, Yun [2 ]
Maciejewski, Ross [4 ]
Ebert, David S. [5 ]
机构
[1] Sejong Univ, Seoul, South Korea
[2] Sejong Univ, Comp Engn, Seoul, South Korea
[3] Intel Folsom, Folsom, CA 95630 USA
[4] Arizona State Univ, Tempe, AZ 85287 USA
[5] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Spatiotemporal data visualization; kernel density estimation; flow map; gravity model; GRAVITY MODEL; SPACE-TIME; MIGRATION; SPREAD; SYSTEM; TRADE;
D O I
10.1109/TVCG.2017.2666146
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information. We estimate a continuous distribution of these events over space and time, and extract flow fields for spatial and temporal changes utilizing a gravity model. Then, we visualize the spatiotemporal patterns in the data by employing flow visualization techniques. The user is presented with temporal trends of geo-referenced discrete events on a map. As such, overall spatiotemporal data flow patterns help users analyze geo-referenced temporal events, such as disease outbreaks, crime patterns, etc. To validate our model, we discard the trajectory information in an origin-destination dataset and apply our technique to the data and compare the derived trajectories and the original. Finally, we present spatiotemporal trend analysis for statistical datasets including twitter data, maritime search and rescue events, and syndromic surveillance.
引用
收藏
页码:1287 / 1300
页数:14
相关论文
共 50 条
  • [31] Data Visualization and Statistical Literacy for Open and Big Data
    Shanmugam, Ramalingam
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020,
  • [32] Data visualization in information retrieval and data mining
    Efthimiadis, EN
    ASIS 2000: PROCEEDINGS OF THE 63RD ASIS ANNUAL MEETING, VOL 37, 2000, 2000, 37 : 444 - 446
  • [33] Statistical inference for trends in spatiotemporal data
    Ives, Anthony R.
    Zhu, Likai
    Wang, Fangfang
    Zhu, Jun
    Morrow, Clay J.
    Radeloff, Volker C.
    REMOTE SENSING OF ENVIRONMENT, 2021, 266
  • [34] Spatiotemporal Big Data Challenges for Traffic Flow Analysis
    Pavlyuk, Dmitry
    RELIABILITY AND STATISTICS IN TRANSPORTATION AND COMMUNICATION, 2018, 36 : 232 - 240
  • [35] Analysis of Spatiotemporal Data Imputation Methods for Traffic Flow Data in Urban Networks
    Joelianto, Endra
    Fathurrahman, Muhammad Farhan
    Sutarto, Herman Yoseph
    Semanjski, Ivana
    Putri, Adiyana
    Gautama, Sidharta
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (05)
  • [36] A Novel Spatiotemporal Data Model for River Water Quality Visualization and Analysis
    Qiu, Yinguo
    Xie, Hui
    Sun, Jiuyun
    Duan, Hongtao
    IEEE ACCESS, 2019, 7 : 155455 - 155461
  • [37] Data Visualization and Statistical Graphics in big data analysis by Google Data Studio - Sales Case Study
    Allaymoun, Mohammad H.
    Khaled, Masooma
    Saleh, Fatima
    Merza, Fatima
    2022 IEEE TECHNOLOGY AND ENGINEERING MANAGEMENT CONFERENCE (TEMSCON EUROPE), 2022, : 228 - 234
  • [38] Analysis and Visualization of Seismic Data Using Mutual Information
    Tenreiro Machado, Jose A.
    Lopes, Antonio M.
    ENTROPY, 2013, 15 (09) : 3892 - 3909
  • [39] Interactive information visualization for exploratory intelligence data analysis
    Risch, J
    May, R
    Thomas, J
    Dowson, S
    PROCEEDINGS OF THE IEEE 1996 VIRTUAL REALITY ANNUAL INTERNATIONAL SYMPOSIUM, 1996, : 230 - &
  • [40] Information Theory and Data Visualization Approach to Poll Analysis
    Huh, Moon Yul
    Cha, Woon Ock
    KOREAN JOURNAL OF APPLIED STATISTICS, 2007, 20 (01) : 61 - 78