Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information

被引:38
|
作者
Kim, Seokyeon [1 ]
Jeong, Seongmin [1 ]
Woo, Insoo [3 ]
Jang, Yun [2 ]
Maciejewski, Ross [4 ]
Ebert, David S. [5 ]
机构
[1] Sejong Univ, Seoul, South Korea
[2] Sejong Univ, Comp Engn, Seoul, South Korea
[3] Intel Folsom, Folsom, CA 95630 USA
[4] Arizona State Univ, Tempe, AZ 85287 USA
[5] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Spatiotemporal data visualization; kernel density estimation; flow map; gravity model; GRAVITY MODEL; SPACE-TIME; MIGRATION; SPREAD; SYSTEM; TRADE;
D O I
10.1109/TVCG.2017.2666146
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information. We estimate a continuous distribution of these events over space and time, and extract flow fields for spatial and temporal changes utilizing a gravity model. Then, we visualize the spatiotemporal patterns in the data by employing flow visualization techniques. The user is presented with temporal trends of geo-referenced discrete events on a map. As such, overall spatiotemporal data flow patterns help users analyze geo-referenced temporal events, such as disease outbreaks, crime patterns, etc. To validate our model, we discard the trajectory information in an origin-destination dataset and apply our technique to the data and compare the derived trajectories and the original. Finally, we present spatiotemporal trend analysis for statistical datasets including twitter data, maritime search and rescue events, and syndromic surveillance.
引用
收藏
页码:1287 / 1300
页数:14
相关论文
共 50 条
  • [21] Analysis of traffic flow based on data visualization
    Han, Weiguo
    Wang, Jinfeng
    Wang, Haiqi
    Hu, Jianjun
    Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering), 2004, 28 (05):
  • [22] Multilevel Visualization of Travelogue Trajectory Data
    Ma, Yongsai
    Wang, Yang
    Xu, Guangluan
    Tai, Xianqing
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (01):
  • [23] Data visualization and analysis within a Hydrologic Information System: Integrating with the R statistical computing environment
    Horsburgh, Jeffery S.
    Reeder, Stephanie L.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 52 : 51 - 61
  • [24] Analysis of spatiotemporal data relationship using information granules
    Mingli Song
    Wenqian Shang
    Lidong Wang
    Witold Pedrycz
    International Journal of Machine Learning and Cybernetics, 2017, 8 : 1439 - 1446
  • [25] Analysis of spatiotemporal data relationship using information granules
    Song, Mingli
    Shang, Wenqian
    Wang, Lidong
    Pedrycz, Witold
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (05) : 1439 - 1446
  • [26] An interactive design, visualization, and analysis tool for information flow over a tactical data network
    Hill, JMD
    Surdu, JR
    Carver, CA
    Vaglia, JA
    Pooch, UW
    SIMULATION, 2001, 77 (3-4) : 104 - 113
  • [27] Optimized Spatiotemporal Data Scheduling Based on Maximum Flow for Multilevel Visualization Tasks
    Zhu, Qing
    Chen, Meite
    Feng, Bin
    Zhou, Yan
    Li, Maosu
    Xu, Zhaowen
    Ding, Yulin
    Liu, Mingwei
    Wang, Wei
    Xie, Xiao
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (09)
  • [28] APPLICATION OF GENERALIZED INFORMATION TO ANALYSIS OF STATISTICAL DATA
    COMYN, G
    LOSFELD, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (15): : 1075 - 1078
  • [29] Analysis of Statistical Information for Data Trend Forecasting
    Sherstneva, Alina
    Sherstneva, Olga
    2020 INTERNATIONAL URAL CONFERENCE ON ELECTRICAL POWER ENGINEERING (URALCON), 2020, : 153 - 158
  • [30] Interactive visual analysis of spatiotemporal characteristics in tropical cyclone trajectory data
    Xie, Cui
    Gao, Xiaotian
    Dong, Junyu
    2018 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS, 2019, 147 : 240 - 246