Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information

被引:38
|
作者
Kim, Seokyeon [1 ]
Jeong, Seongmin [1 ]
Woo, Insoo [3 ]
Jang, Yun [2 ]
Maciejewski, Ross [4 ]
Ebert, David S. [5 ]
机构
[1] Sejong Univ, Seoul, South Korea
[2] Sejong Univ, Comp Engn, Seoul, South Korea
[3] Intel Folsom, Folsom, CA 95630 USA
[4] Arizona State Univ, Tempe, AZ 85287 USA
[5] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Spatiotemporal data visualization; kernel density estimation; flow map; gravity model; GRAVITY MODEL; SPACE-TIME; MIGRATION; SPREAD; SYSTEM; TRADE;
D O I
10.1109/TVCG.2017.2666146
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information. We estimate a continuous distribution of these events over space and time, and extract flow fields for spatial and temporal changes utilizing a gravity model. Then, we visualize the spatiotemporal patterns in the data by employing flow visualization techniques. The user is presented with temporal trends of geo-referenced discrete events on a map. As such, overall spatiotemporal data flow patterns help users analyze geo-referenced temporal events, such as disease outbreaks, crime patterns, etc. To validate our model, we discard the trajectory information in an origin-destination dataset and apply our technique to the data and compare the derived trajectories and the original. Finally, we present spatiotemporal trend analysis for statistical datasets including twitter data, maritime search and rescue events, and syndromic surveillance.
引用
收藏
页码:1287 / 1300
页数:14
相关论文
共 50 条
  • [1] Variable-Based Spatiotemporal Trajectory Data Visualization Illustrated
    He, Jing
    Chen, Haonan
    Chen, Yijin
    Tang, Xinming
    Zou, Yebin
    IEEE ACCESS, 2019, 7 : 143646 - 143672
  • [2] Visualization Cube: Modeling Interaction for Exploratory Data Analysis of Spatiotemporal Trend Information
    Takama, Yasufumi
    Yamada, Takashi
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 3, 2009, : 1 - 4
  • [3] Data Visualization and Statistical Graphics in Big Data Analysis
    Cook, Dianne
    Lee, Eun-Kyung
    Majumder, Mahbubul
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 3, 2016, 3 : 133 - 159
  • [4] The Visualization Approach Based on Data Flow for Traffic Trajectory
    Zhao W.
    Tan B.
    Zhou R.
    Wang G.
    Chen H.
    Wu Y.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (05): : 768 - 776
  • [5] SPATIOTEMPORAL VISUALIZATION OF NEUROMAGNETIC DATA
    SWERDLOFF, SJ
    RUEGSEGGER, M
    WAKAI, RT
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1993, 86 (01): : 51 - 57
  • [6] Multidimensional data visualization in the statistical analysis of curricula
    Dzemyda, G
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (01) : 265 - 281
  • [7] Automatization of data visualization and statistical analysis with R
    Videira, A.
    Duarte, J. F.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2021, 51 : 14 - 15
  • [8] Robust visualization of trajectory data
    Zhang, Ying
    Klein, Karsten
    Deussen, Oliver
    Gutschlag, Theodor
    Storandt, Sabine
    IT-INFORMATION TECHNOLOGY, 2022, 64 (4-5): : 181 - 191
  • [9] Multiscale Visualization of Trajectory Data
    Liang, Sheng
    Xu, Qing
    Guo, Yuejun
    Fan, Yang
    2015 19TH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION IV 2015, 2015, : 206 - 210
  • [10] Visualization and visual analysis of vessel trajectory data: A survey
    Liu, Haiyan
    Chen, Xiaohui
    Wang, Yidi
    Zhang, Bing
    Chen, Yunpeng
    Zhao, Ying
    Zhou, Fangfang
    VISUAL INFORMATICS, 2021, 5 (04) : 1 - 10