Arbitrary atomic cluster state concentration for one-way quantum computation

被引:4
|
作者
Zhou, Lan [1 ,2 ]
Sheng, Yu-Bo [2 ,3 ]
Wang, Xing-Fu [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Math & Phys, Nanjing 210003, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing 210003, Jiangsu, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Inst Signal Proc Transmiss, Nanjing 210003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
MULTIPARTITE ENTANGLEMENT PURIFICATION; INPUT-OUTPUT PROCESS; SINGLE ATOMS; W-STATE; CAVITY; TELEPORTATION; MICROCAVITY; DOT;
D O I
10.1364/JOSAB.31.000503
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The cluster state is of fundamental importance in one-way quantum computation, but it is fragile in practical noisy environments. In this paper, we describe a method for distilling the maximally entangled atomic cluster state from the arbitrary less-entangled atomic cluster state. During the entire protocol, we only require one pair of less-entangled atomic cluster state and some auxiliary single atoms. Interestingly, the less-entangled atomic cluster state and the auxiliary single atoms do not interact with each other directly. By setting the robust coherent state as the input-output of the low-Q cavities, the concentration task can be achieved. Moreover, the total success probability can be increased by repeating the whole process. This entanglement concentration protocol may have practical applications in one-way quantum computation. (C) 2014 Optical Society of America
引用
收藏
页码:503 / 511
页数:9
相关论文
共 50 条
  • [41] Loss tolerance in one-way quantum computation via counterfactual error correction
    Varnava, Michael
    Browne, Daniel E.
    Rudolph, Terry
    PHYSICAL REVIEW LETTERS, 2006, 97 (12)
  • [42] Phase transition of computational power in the resource states for one-way quantum computation
    Browne, Daniel E.
    Elliott, Matthew B.
    Flammia, Steven T.
    Merkel, Seth T.
    Miyake, Akimasa
    Short, Anthony J.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [43] Controlled-X gate with cache function for one-way quantum computation
    Shen, Heng
    Qu, Kenan
    Zhang, Weigang
    Jin, Jing
    PHYSICAL REVIEW A, 2012, 85 (03):
  • [44] Error-correcting one-way quantum computation with global entangling gates
    Joo, Jaewoo
    Feder, David L.
    PHYSICAL REVIEW A, 2009, 80 (03):
  • [45] Gapped Two-Body Hamiltonian Whose Unique Ground State Is Universal for One-Way Quantum Computation
    Chen, Xie
    Zeng, Bei
    Gu, Zheng-Cheng
    Yoshida, Beni
    Chuang, Isaac L.
    PHYSICAL REVIEW LETTERS, 2009, 102 (22)
  • [46] Experimental realization of a four-photon seven-qubit graph state for one-way quantum computation
    Lee, Sang Min
    Park, Hee Su
    Cho, Jaeyoon
    Kang, Yoonshik
    Lee, Jae Yong
    Kim, Heonoh
    Lee, Dong-Hoon
    Choi, Sang-Kyung
    OPTICS EXPRESS, 2012, 20 (07): : 6915 - 6926
  • [47] Quantum Circuit Synthesis Targeting to Improve One-Way Quantum Computation Pattern Cost Metrics
    Houshmand, Mahboobeh
    Sedighi, Mehdi
    Zamani, Morteza Saheb
    Marjoei, Kourosh
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2017, 13 (04)
  • [48] Outcome Independence of Entanglement in One-Way Computation
    Sasaki, Toshihiko
    Ichikawa, Tsubasa
    Tsutsui, Izumi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (06)
  • [49] Non-adaptive Universal One-Way Hash Functions from Arbitrary One-Way Functions
    Mao, Xinyu
    Mazor, Noam
    Zhang, Jiapeng
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2023, PT IV, 2023, 14007 : 502 - 531
  • [50] The one way to quantum computation
    Danos, Vincent
    Kashefi, Elham
    Panangaden, Prakash
    AUTOMATA, LANGAGES AND PROGRAMMING, PT 2, 2006, 4052 : 13 - 21