Arbitrary atomic cluster state concentration for one-way quantum computation

被引:4
|
作者
Zhou, Lan [1 ,2 ]
Sheng, Yu-Bo [2 ,3 ]
Wang, Xing-Fu [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Math & Phys, Nanjing 210003, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing 210003, Jiangsu, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Inst Signal Proc Transmiss, Nanjing 210003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
MULTIPARTITE ENTANGLEMENT PURIFICATION; INPUT-OUTPUT PROCESS; SINGLE ATOMS; W-STATE; CAVITY; TELEPORTATION; MICROCAVITY; DOT;
D O I
10.1364/JOSAB.31.000503
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The cluster state is of fundamental importance in one-way quantum computation, but it is fragile in practical noisy environments. In this paper, we describe a method for distilling the maximally entangled atomic cluster state from the arbitrary less-entangled atomic cluster state. During the entire protocol, we only require one pair of less-entangled atomic cluster state and some auxiliary single atoms. Interestingly, the less-entangled atomic cluster state and the auxiliary single atoms do not interact with each other directly. By setting the robust coherent state as the input-output of the low-Q cavities, the concentration task can be achieved. Moreover, the total success probability can be increased by repeating the whole process. This entanglement concentration protocol may have practical applications in one-way quantum computation. (C) 2014 Optical Society of America
引用
收藏
页码:503 / 511
页数:9
相关论文
共 50 条
  • [31] One-way quantum computation with four-dimensional photonic qudits
    Joo, Jaewoo
    Knight, Peter L.
    O'Brien, Jeremy L.
    Rudolph, Terry
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [32] Universal linear Bogoliubov transformations through one-way quantum computation
    Ukai, Ryuji
    Yoshikawa, Jun-ichi
    Iwata, Noriaki
    van Loock, Peter
    Furusawa, Akira
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [33] Measurement-based quantum computation beyond the one-way model
    Gross, D.
    Eisert, J.
    Schuch, N.
    Perez-Garcia, D.
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [34] One-way quantum computation via manipulation of polarization and momentum quibits in two-photon cluster states
    Vallone, G.
    Pomarico, E.
    De Martini, F.
    Mataloni, P.
    LASER PHYSICS LETTERS, 2008, 5 (05) : 398 - 403
  • [35] On quantum one-way permutations
    Kashefi, E
    Nishimura, H
    Vedral, V
    QUANTUM INFORMATION & COMPUTATION, 2002, 2 (05) : 379 - 398
  • [36] One-way quantum computer
    Noriaki Horiuchi
    Nature Photonics, 2015, 9 (1) : 7 - 7
  • [37] On quantum one-way permutations
    Kashefi, Elham
    Nishimura, Harumichi
    Vedral, Vlatko
    Quantum Information and Computation, 2002, 2 (05): : 379 - 398
  • [38] A one-way quantum computer
    Raussendorf, R
    Briegel, HJ
    PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5188 - 5191
  • [39] One-way quantum computer
    Horiuchi, Noriaki
    NATURE PHOTONICS, 2015, 9 (01) : 7 - 7
  • [40] Quantum error correction and one-way LOCC state distinguishability
    Kribs, David W.
    Mintah, Comfort
    Nathanson, Michael
    Pereira, Rajesh
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)