Baseline drift and physiological noise removal in high field fMRI data using kernel PCA

被引:0
|
作者
Song, Xiaomu [1 ]
Ji, Tongyou [1 ]
Wyrwicz, Alice M. [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Ctr Basic MR Res, ENH Res Inst,Dept Radiol, Evanston, IL 60208 USA
关键词
drift; cardiac rate; respiration; aliasing;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Baseline drift and physiological (cardiac and respiratory) fluctuations are among major sources contaminating blood oxygenation level dependent (BOLD) signals in high field functional magnetic resonance imaging (fMRI). Automatically detecting and removing them have been long-standing problems. We propose here a new method, utilizing kernel principal component analysis (KPCA) and frequency analysis, to detect and remove the noise from fMRI data. Differing from thermal noise, the main energy of baseline drift and physiological noise are characterized by the most significant kernel principal components that also contain information on brain structure. To maintain the details of brain anatomy, we filter the feature projections to the components that are found to contain significant baseline drift and physiological noise. This approach is different from most discriminant analysis-based denoising methods that remove insignificant or noisy components before the reconstruction. Experimental results show that the proposed method increases the BOLD contrast and the detection sensitivity of activated voxels.
引用
收藏
页码:441 / 444
页数:4
相关论文
共 50 条
  • [21] Using EEMD to eliminate high frequency noise and baseline drift in pluse blood-oximetry measurement simultaneously
    Han, Qing-Yang
    Wang, Xiao-Dong
    Li, Bing-Yu
    Zhou, Peng-Ji
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2015, 37 (06): : 1384 - 1388
  • [22] MALDI-TOF baseline drift removal using stochastic bernstein approximation
    Kolibal, Joseph
    Howard, Daniel
    [J]. Eurasip Journal on Applied Signal Processing, 2006, 2006
  • [23] MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation
    Joseph Kolibal
    Daniel Howard
    [J]. EURASIP Journal on Advances in Signal Processing, 2006
  • [24] MALDI-TOF baseline drift removal using stochastic Bernstein approximation
    Kolibal, Joseph
    Howard, Daniel
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2006, 2006 (1)
  • [25] Traffic data analysis using kernel PCA and self-organizing map
    Chen, Yudong
    Hu, Jianming
    Zhang, Yi
    Li, Xiang
    [J]. 2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2006, : 474 - 476
  • [26] Mapping rabbit whisker barrels using discriminant analysis of high field fMRI data
    Song, Xiaomu
    Li, Limin
    Aksenov, Daniil
    Miller, Michael J.
    Wyrwicz, Alice M.
    [J]. NEUROIMAGE, 2010, 51 (02) : 775 - 782
  • [27] Comparing causality measures of fMRI data using PCA, CCA and Vector Autoregressive Modelling
    Shah, Adnan
    Khalid, Muhammad Usman
    Seghouane, Abd-Krim
    [J]. 2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 6184 - 6187
  • [28] Analysis and correction of field fluctuations in fMRI data using field monitoring
    Bollmann, Saskia
    Kasper, Lars
    Vannesjo, S. Johanna
    Diaconescu, Andreea O.
    Dietrich, Benjamin E.
    Gross, Simon
    Stephan, Klaas E.
    Pruessmann, Klaas P.
    [J]. NEUROIMAGE, 2017, 154 : 92 - 105
  • [29] BASELINE DRIFT ESTIMATION FOR AIR QUALITY DATA USING QUANTILE TREND FILTERING
    Brantley, Halley L.
    Guinness, Joseph
    Chi, Eric C.
    [J]. ANNALS OF APPLIED STATISTICS, 2020, 14 (02): : 585 - 604
  • [30] Analysis of Sparse PCA using High Dimensional Data
    On, Fatin Raihana
    Jailani, Rozita
    Hassan, Siti Lailatul
    Tahir, Nooritawati Md
    [J]. 2016 IEEE 12TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA), 2016, : 340 - 345