As is well-known, there is a variational principle for the Euler-Poincare equations on a Lie algebra g of a Lie group G obtained by reducing Hamilton's principle on G by the action of G by, say, left multiplication. The purpose of this paper is to give a variational principle for the Lie-Poisson equations on g*, the dual of g, and also to generalize this construction. The more general situation is that in which the original configuration space is not a Lie group, but rather a configuration manifold Q on which a Lie group G acts freely and properly, so that Q -> Q/G becomes a principal bundle. Starting with a Lagrangian system on TQ invariant under the tangent lifted action of G, the reduced equations on (TQ)/G, appropriately identified, are the Lagrange-Poincare equations. Similarly, if we start with a Hamiltonian system on T*Q, invariant under the cotangent lifted action of G, the resulting reduced equations on (T*Q)/G are called the Hamilton-Poincare equations. Amongst our new results, we derive a variational structure for the Hamilton-Poincare equations, give a formula for the Poisson structure on these reduced spaces that simplifies previous formulas of Montgomery, and give a new representation for the symplectic structure on the associated symplectic leaves. We illustrate the formalism with a simple, but interesting example, that of a rigid body with internal rotors.
机构:
Univ Napoli Federico II, Dipartimento Fis E Pancini, Complesso Univ Monte S Angelo Edificio 6,Via Cinti, I-80126 Naples, Italy
INFN, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6,Via Cinti, I-80126 Naples, ItalyUniv Fed ABC, CMCC, BR-09210580 Santo Andre, SP, Brazil
Kurkov, M. A.
Vitale, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Fis E Pancini, Complesso Univ Monte S Angelo Edificio 6,Via Cinti, I-80126 Naples, Italy
INFN, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6,Via Cinti, I-80126 Naples, ItalyUniv Fed ABC, CMCC, BR-09210580 Santo Andre, SP, Brazil
机构:
INFN, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6,via Cinti, I-80126 Naples, ItalyINFN, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6,via Cinti, I-80126 Naples, Italy
Bascone, Francesco
Kurkov, Maxim
论文数: 0引用数: 0
h-index: 0
机构:
INFN, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6,via Cinti, I-80126 Naples, Italy
Univ Napoli Federico II, Dipartimento Fis E Pancini, Complesso Univ Monte S Angelo Edificio 6,Via Cinti, I-80126 Naples, ItalyINFN, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6,via Cinti, I-80126 Naples, Italy
机构:
Univ Fed Juiz de Fora, Dept Matemat, ICE, Juiz De Fora, MG, Brazil
Tomsk Polytech Univ, Phys Math Lab, Tomsk 634050, RussiaUniv Fed Juiz de Fora, Dept Matemat, ICE, Juiz De Fora, MG, Brazil
机构:
Stockholm Univ, Nordita, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden
Uppsala Univ, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden
Beijing Inst Technol, Dept Phys, Beijing 100081, Peoples R ChinaStockholm Univ, Nordita, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden
Dai, Jin
Ioannidou, Theodora
论文数: 0引用数: 0
h-index: 0
机构:
Aristotle Univ Thessaloniki, Fac Civil Engn, Sch Engn, Thessaloniki 54249, GreeceStockholm Univ, Nordita, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden
Ioannidou, Theodora
Niemi, Antti J.
论文数: 0引用数: 0
h-index: 0
机构:
Stockholm Univ, Nordita, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden
Beijing Inst Technol, Dept Phys, Beijing 100081, Peoples R China
Univ Tours, Lab Math & Phys Theor, Federat Denis Poisson, Parc Grandmont,CNRS,UMR 6083, F-37200 Tours, FranceStockholm Univ, Nordita, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden