Classification Scheme of Multi-objective Estimation of Distribution Algorithms

被引:0
|
作者
Mendoza-Gonzalez, Alfredo [1 ]
Ponce-de-Leon, Eunice [1 ]
Diaz-Diaz, Elva [1 ]
机构
[1] Autonomous Univ Aguascalientes, Intelligent Comp Dept, Aguascalientes, Ags, Mexico
来源
2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2013年
关键词
Estimation of Distribution Algorithms; Evolutionary Algorithms; Multi-objective optimization;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A variety of Estimation of Distribution Algorithms for multi-objective optimization (MOEDAs) has been reported, each of them with its own characteristics and techniques in their optimization process. In this research we present a classification scheme for these algorithms, based on ten characteristics: domain of the variables, relationships between the variables, probabilistic graphical model, estimation approach, restriction support, problem handling, sorting method, individuals' handling, selection approach, and replacement approach. These characteristics were extracted by analyzing all the 24 MOEDAs reported in the literature. The scheme presented here helps to identify the methods and techniques used in each algorithm, also, a useful method for the analysis of the optimization process of an EDA is proposed. This paper includes a brief analysis of the influence in the results of applying different selection/replacement percentages.
引用
收藏
页码:3051 / 3057
页数:7
相关论文
共 50 条
  • [11] Adaptive and assortative mating scheme for evolutionary multi-objective algorithms
    Le, Khoi
    Landa-Silva, Dario
    ARTIFICIAL EVOLUTION, 2008, 4926 : 172 - 183
  • [12] Multi-objective evolutionary algorithms for fuzzy classification in survival prediction
    Jimenez, Fernando
    Sanchez, Gracia
    Juarez, Jose M.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2014, 60 (03) : 197 - 219
  • [13] Mining classification rules using evolutionary multi-objective algorithms
    Kshetrapalapuram, KK
    Kirley, M
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 3, PROCEEDINGS, 2005, 3683 : 959 - 965
  • [14] Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem
    Martins, Marcella S. R.
    Delgado, Myriam R. B. S.
    Luders, Ricardo
    Santana, Roberto
    Goncalves, Richard A.
    de Almeida, Carolina P.
    JOURNAL OF HEURISTICS, 2018, 24 (01) : 25 - 47
  • [15] Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem
    Marcella S. R. Martins
    Myriam R. B. S. Delgado
    Ricardo Lüders
    Roberto Santana
    Richard A. Gonçalves
    Carolina P. de Almeida
    Journal of Heuristics, 2018, 24 : 25 - 47
  • [16] DOPGA: a new fitness assignment scheme for multi-objective evolutionary algorithms
    Ergul, Engin Ufuk
    Eminoglu, Ilyas
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2014, 45 (03) : 407 - 426
  • [17] The multi-objective ITO algorithms
    Dong, Wenyong
    Zhang, Dengyi
    Li, Yuanxiang
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 53 - +
  • [18] Multi-objective Cultural Algorithms
    Best, Christopher
    Che, Xiangdong
    Reynolds, Robert G.
    Liu, Dapeng
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [19] Multi-Objective Cultural Algorithms
    Reynolds, Robert
    Liu, Dapeng
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1233 - 1241
  • [20] Optimization of Contract Distribution Based on Multi-objective Estimation of Distribution Algorithm
    Hu, Laihong
    Yang, Xiaogang
    Fan, Hongdong
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON COMPUTING AND ARTIFICIAL INTELLIGENCE (ICCAI 2018), 2018, : 9 - 12