Adaptive and assortative mating scheme for evolutionary multi-objective algorithms

被引:0
|
作者
Le, Khoi [1 ]
Landa-Silva, Dario [1 ]
机构
[1] Univ Nottingham, Sch Comp Sci, Automated Scheduling Optimisat & Planning Res Grp, Nottingham NG7 2RD, England
来源
ARTIFICIAL EVOLUTION | 2008年 / 4926卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We are interested in the role of restricted mating schemes in the context of evolutionary multi-objective algorithms. In this paper, we propose an adaptive assortative mating scheme that uses similarity in the decision space (genotypic assortative mating) and adapts the mating pressure as the search progresses. We show that this mechanism improves the performance of the simple evolutionary algorithm for multi-objective optimisation (SEAMO2) on the multiple knapsack problem.
引用
收藏
页码:172 / 183
页数:12
相关论文
共 50 条
  • [1] Two-stage Assortative Mating for Multi-Objective Multifactorial Evolutionary Optimization
    Yang, Cuie
    Ding, Jinliang
    Tan, Kay Chen
    Jin, Yaochu
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [2] Self-Adaptive Mechanism for Multi-objective Evolutionary Algorithms
    Zeng, Fanchao
    Low, Malcolm Yoke Hean
    Decraene, James
    Zhou, Suiping
    Cai, Wentong
    [J]. INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 7 - 12
  • [3] A Co-Evolutionary Scheme for Multi-Objective Evolutionary Algorithms Based on ε-Dominance
    Menchaca-Mendez, Adriana
    Montero, Elizabeth
    Miguel Antonio, Luis
    Zapotecas-Martinez, Saul
    Coello Coello, Carlos A.
    Riff, Maria-Cristina
    [J]. IEEE ACCESS, 2019, 7 : 18267 - 18283
  • [4] DOPGA: a new fitness assignment scheme for multi-objective evolutionary algorithms
    Ergul, Engin Ufuk
    Eminoglu, Ilyas
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2014, 45 (03) : 407 - 426
  • [5] Adaptive Multi-Objective Evolutionary Algorithms for Overtime Planning in Software Projects
    Sarro, Federica
    Ferrucci, Filomena
    Harman, Mark
    Manna, Alessandra
    Ren, Jian
    [J]. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2017, 43 (10) : 898 - 917
  • [6] Evolutionary approach to multi-objective problems using adaptive genetic algorithms
    Bingul, Z
    Sekmen, A
    Zein-Sabatto, S
    [J]. SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 1923 - 1927
  • [7] An Adaptive Data Structure for Evolutionary Multi-Objective Algorithms with Unbounded Archives
    Yuen, Joseph
    Gao, Sophia
    Wagner, Markus
    Neumann, Frank
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [8] An effective model of multiple multi-objective evolutionary algorithms with the assistance of regional multi-objective evolutionary algorithms: VIPMOEAs
    Cheshmehgaz, Hossein Rajabalipour
    Desa, Mohamad Ishak
    Wibowo, Antoni
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (05) : 2863 - 2895
  • [9] Genetic diversity as an objective in multi-objective evolutionary algorithms
    Toffolo, A
    Benini, E
    [J]. EVOLUTIONARY COMPUTATION, 2003, 11 (02) : 151 - 167
  • [10] An Ensemble of S-energy Based Mating Restrictions for Multi-Objective Evolutionary Algorithms
    Bernabe Rodriguez, Amin, V
    Coello Coello, Carlos A.
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,