Tri-Hamiltonian extensions of separable systems in the plane

被引:0
|
作者
Degiovanni, L [1 ]
机构
[1] Univ Turin, Dept Math, I-10123 Turin, Italy
关键词
D O I
10.1063/1.2188227
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method to construct tri-Hamiltonian extensions of a separable system is presented. The procedure is tested for systems, with a Hamiltonian quadratic in the momenta, separable in classical sense in any of the four sets of orthogonal separable coordinates on the Euclidean plane. Some explicit examples are constructed. Finally a conjecture on possible generalizations to other classes of systems is discussed: in particular, the method can be adapted to the 11 orthogonal separable coordinate sets of the Euclidean three-space. (c) 2006 American Institute of Physics.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] A generalized MKdV hierarchy, tri-Hamiltonian structure, higher-order binary constrained flows and its integrable couplings system
    Xia, TC
    You, FC
    CHAOS SOLITONS & FRACTALS, 2006, 28 (04) : 938 - 948
  • [42] Extensions, dilations, and spectral problems of singular Hamiltonian systems
    Allahverdiev, Bilender P.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (05) : 1761 - 1773
  • [43] CONSTRUCTION OF A SEPARABLE HAMILTONIAN
    PEARSON, DB
    NUOVO CIMENTO, 1965, 38 (04): : 1720 - +
  • [44] Invariant Classification of Orthogonally Separable Hamiltonian Systems in Euclidean Space
    Joshua T. Horwood
    Raymond G. McLenaghan
    Roman G. Smirnov
    Communications in Mathematical Physics, 2005, 259 : 679 - 709
  • [45] A SEMI-NUMERICAL PERTURBATION METHOD FOR SEPARABLE HAMILTONIAN SYSTEMS
    Henrard, Jacques
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 49 (01): : 43 - 67
  • [46] Symplectic Effective Order Numerical Methods for Separable Hamiltonian Systems
    Ahmad, Junaid
    Habib, Yousaf
    Rehman, Shafiq ur
    Arif, Azqa
    Shafiq, Saba
    Younas, Muhammad
    SYMMETRY-BASEL, 2019, 11 (02):
  • [47] SEMIEXPLICIT SYMPLECTIC INTEGRATORS FOR NON-SEPARABLE HAMILTONIAN SYSTEMS
    Jayawardana, Buddhika
    Ohsawa, Tomoki
    MATHEMATICS OF COMPUTATION, 2022, 92 (339) : 251 - 281
  • [48] Invariant classification of orthogonally separable hamiltonian systems in Euclidean space
    Horwood, JT
    McLenaghan, RG
    Smirnov, RG
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (03) : 679 - 709
  • [49] FAST WEAK-KAM INTEGRATORS FOR SEPARABLE HAMILTONIAN SYSTEMS
    Bouillard, Anne
    Faou, Erwan
    Zavidovique, Maxime
    MATHEMATICS OF COMPUTATION, 2015, 85 (297) : 85 - 117
  • [50] Group invariant classification of separable Hamiltonian systems in the Euclidean plane and the O(4)-symmetric Yang-Mills theories of Yatsun
    McLenaghan, RG
    Smirnov, RG
    The, D
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (03) : 1422 - 1440