Tri-Hamiltonian extensions of separable systems in the plane

被引:0
|
作者
Degiovanni, L [1 ]
机构
[1] Univ Turin, Dept Math, I-10123 Turin, Italy
关键词
D O I
10.1063/1.2188227
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method to construct tri-Hamiltonian extensions of a separable system is presented. The procedure is tested for systems, with a Hamiltonian quadratic in the momenta, separable in classical sense in any of the four sets of orthogonal separable coordinates on the Euclidean plane. Some explicit examples are constructed. Finally a conjecture on possible generalizations to other classes of systems is discussed: in particular, the method can be adapted to the 11 orthogonal separable coordinate sets of the Euclidean three-space. (c) 2006 American Institute of Physics.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] A Family of Integrable Differential-Difference Equations: Tri-Hamiltonian Structure and Lie Algebra of Vector Fields
    Zhang, Ning
    Xu, Xi-Xiang
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [22] A hierarchy of soliton equations associated with a higher-dimensional loop algebra and its tri-Hamiltonian structure
    Zhang, Yufeng
    Li, Yan
    MODERN PHYSICS LETTERS B, 2008, 22 (19): : 1837 - 1850
  • [23] The Period Function of Hamiltonian Systems with Separable Variables
    Villadelprat, Jordi
    Zhang, Xiang
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (02) : 741 - 767
  • [24] The Period Function of Hamiltonian Systems with Separable Variables
    Jordi Villadelprat
    Xiang Zhang
    Journal of Dynamics and Differential Equations, 2020, 32 : 741 - 767
  • [25] Separable Polynomials and Separable Extensions
    Schwarzweller, Christoph
    FORMALIZED MATHEMATICS, 2024, 32 (01): : 33 - 46
  • [26] Tri-Hamiltonian duality between the Wadati-Konno-Ichikawa hierarchy and the Song-Qu-Qiao hierarchy
    Tian, Kai
    Liu, Q. P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (04)
  • [27] Friedrichs extensions of a class of singular Hamiltonian systems
    Yang, Chen
    Sun, Huaqing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 293 : 359 - 391
  • [28] Extensions of Hamiltonian systems dependent on a rational parameter
    Chanu, Claudia Maria
    Degiovanni, Luca
    Rastelli, Giovanni
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (12)
  • [29] Warped product of Hamiltonians and extensions of Hamiltonian systems
    Chanu, Claudia Maria
    Degiovanni, Luca
    Rastelli, Giovanni
    XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30), 2015, 597
  • [30] Orthogonal separable Hamiltonian systems on T2
    Chen, Cheng
    Liu, Fei
    Zhang, Xiang
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (12): : 1735 - 1747