A note for an explicit formula for the determinant of pentadiagonal and heptadiagonal symmetric Toeplitz matrices

被引:7
|
作者
Elouafi, Mohamed [1 ]
机构
[1] Classes Preparatoites Grandes Ecoles Ingenieurs, Tangier, Morocco
关键词
Pentadiagonal Toeplitz matrices; Heptadiagonal Toeplitz matrices; Determinants; ALGORITHM;
D O I
10.1016/j.amc.2012.10.104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
More recently, the author gave an explicit formula for the determinant of a pentadiagonal symmetric Toeplitz matrix. The objective of this note is to make this formula more explicit. The heptadiagonal symmetric matrices are also considered, we make a precise conjecture about their explicit determinants. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4789 / 4791
页数:3
相关论文
共 50 条
  • [41] Toeplitz matrices are unitarily similar to symmetric matrices
    Chien, Mao-Ting
    Liu, Jianzhen
    Nakazato, Hiroshi
    Tam, Tin-Yau
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (10): : 2131 - 2144
  • [42] A cost-efficient numerical algorithm for the determinants of heptadiagonal matrices with Toeplitz structure
    Ji-Teng Jia
    Fu-Rong Wang
    Journal of Mathematical Chemistry, 2023, 61 : 1275 - 1291
  • [43] Explicit Formulas for the Determinants of Toeplitz Matrices
    Withers, Christopher S.
    Nadarajah, Saralees
    UTILITAS MATHEMATICA, 2009, 79 : 31 - 49
  • [44] A NOTE ON CONJUGATE TOEPLITZ MATRICES
    KELIBA, NT
    HUYLEBROUCK, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 139 : 103 - 109
  • [45] A note on inversion of Toeplitz matrices
    Lv, Xiao-Guang
    Huang, Ting-Zhu
    APPLIED MATHEMATICS LETTERS, 2007, 20 (12) : 1189 - 1193
  • [46] Note on the Toeplitz Bezoutian matrices
    Wu, Huazhang
    Cheng, Jingwei
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 268 - 273
  • [47] A note on multilevel Toeplitz matrices
    Cao, Lei
    Koyuncu, Selcuk
    SPECIAL MATRICES, 2019, 7 (01): : 114 - 126
  • [48] Explicit Eigenvalues of Some Perturbed Heptadiagonal Matrices Via Recurrent Sequences
    Kouachi, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (01) : 28 - 37
  • [49] A FORMULA FOR THE DETERMINANT OF A SUM OF MATRICES
    REUTENAUER, C
    SCHUTZENBERGER, MP
    LETTERS IN MATHEMATICAL PHYSICS, 1987, 13 (04) : 299 - 302
  • [50] Two Inverse Eigenproblems for Certain Symmetric and Nonsymmetric Pentadiagonal Matrices
    Arela-Perez, S.
    Lozano, Charlie
    Nina, Hans
    Pickmann-Soto, H.
    MATHEMATICS, 2022, 10 (17)