A note for an explicit formula for the determinant of pentadiagonal and heptadiagonal symmetric Toeplitz matrices

被引:7
|
作者
Elouafi, Mohamed [1 ]
机构
[1] Classes Preparatoites Grandes Ecoles Ingenieurs, Tangier, Morocco
关键词
Pentadiagonal Toeplitz matrices; Heptadiagonal Toeplitz matrices; Determinants; ALGORITHM;
D O I
10.1016/j.amc.2012.10.104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
More recently, the author gave an explicit formula for the determinant of a pentadiagonal symmetric Toeplitz matrix. The objective of this note is to make this formula more explicit. The heptadiagonal symmetric matrices are also considered, we make a precise conjecture about their explicit determinants. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4789 / 4791
页数:3
相关论文
共 50 条
  • [21] An explicit formula for the determinants of tridiagonal 2-Toeplitz and 3-Toeplitz matrices
    Slowik, Roksana
    ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2023, 8 (01) : 3 - 17
  • [22] Spectral properties for a type of heptadiagonal symmetric matrices
    da Silva, Joao Lita
    AIMS MATHEMATICS, 2023, 8 (12): : 29995 - 30022
  • [23] An efficient numerical algorithm for the determinant of a cyclic pentadiagonal Toeplitz matrix
    Jia, Jiteng
    Li, Sumei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (12) : 2992 - 2999
  • [24] A note on the structured perturbation analysis for the inversion formula of Toeplitz matrices
    Wu, Jing
    Gu, Xian-Ming
    Zhao, Yong-Liang
    Huang, Yu-Yun
    Carpentieri, Bruno
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 645 - 663
  • [25] A note on the structured perturbation analysis for the inversion formula of Toeplitz matrices
    Jing Wu
    Xian-Ming Gu
    Yong-Liang Zhao
    Yu-Yun Huang
    Bruno Carpentieri
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 645 - 663
  • [26] Explicit inverse of symmetric, tridiagonal near Toeplitz matrices with strictly diagonally dominant Toeplitz part
    Kurmanbek, Bakytzhan
    Erlangga, Yogi
    Amanbek, Yerlan
    SPECIAL MATRICES, 2025, 13 (01):
  • [27] The complete positivity of symmetric tridiagonal and pentadiagonal matrices
    Cao, Lei
    McLaren, Darian
    Plosker, Sarah
    SPECIAL MATRICES, 2023, 11 (01):
  • [28] On a homogeneous recurrence relation for the determinants of general pentadiagonal Toeplitz matrices
    Jia, Jiteng
    Yang, Boting
    Li, Sumei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (04) : 1036 - 1044
  • [29] Explicit formula for positive integer powers of k-tridiagonal Toeplitz matrices
    Jia, Ji-Teng
    Wang, Jie
    He, Qi
    Yan, Yu-Cong
    Yilmaz, Fatih
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 811 - 822
  • [30] Explicit formula for positive integer powers of k-tridiagonal Toeplitz matrices
    Ji-Teng Jia
    Jie Wang
    Qi He
    Yu-Cong Yan
    Fatih Yılmaz
    Journal of Applied Mathematics and Computing, 2023, 69 : 811 - 822