Blow-Up Phenomena for Porous Medium Equation with Nonlinear Flux on the Boundary

被引:0
|
作者
Hu, Yan [1 ]
Li, Jing [2 ]
Wang, Liangwei [1 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Wanzhou 404100, Peoples R China
[2] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
CAUCHY-PROBLEM; DIFFUSION;
D O I
10.1155/2013/952126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the blow-up phenomena for nonnegative solutions of porous medium equation with Neumann boundary conditions. We find that the absorption and the nonlinear flux on the boundary have some competitions in the blow-up phenomena.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [31] BLOW-UP PHENOMENA FOR A NONLOCAL QUASILINEAR PARABOLIC EQUATION WITH TIME-DEPENDENT COEFFICIENTS UNDER NONLINEAR BOUNDARY FLUX
    Liu, Zhiqing
    Fang, Zhong Bo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (10): : 3619 - 3635
  • [32] Blow-up and Global Solutions for a Porous Medium Equation Under Robin Boundary Conditions
    Hao, Jinlan
    Zhang, Lingling
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4750 - 4755
  • [33] Critical exponents and blow-up rate for a nonlinear diffusion equation with logarithmic boundary flux
    Li, Zhongping
    Mu, Chunlai
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) : 933 - 939
  • [34] Blow-up of solutions to a semilinear heat equation with a viscoelastic term and a nonlinear boundary flux
    Han, Yuzhu
    Gao, Wenjie
    Li, Haixia
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (09) : 825 - 830
  • [35] Global existence and blow-up phenomena for a nonlinear wave equation
    Hao, Jianghao
    Zhang, Yajing
    Li, Shengjia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) : 4823 - 4832
  • [36] LOWER BOUNDS ESTIMATE FOR THE BLOW-UP TIME OF A NONLINEAR NONLOCAL POROUS MEDIUM EQUATION
    刘灯明
    穆春来
    辛巧
    Acta Mathematica Scientia, 2012, 32 (03) : 1206 - 1212
  • [37] LOWER BOUNDS ESTIMATE FOR THE BLOW-UP TIME OF A NONLINEAR NONLOCAL POROUS MEDIUM EQUATION
    Liu Dengming
    Mu Chunlai
    Xin Qiao
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (03) : 1206 - 1212
  • [38] GLOBAL EXISTENCE AND BLOW-UP PHENOMENA FOR THE DOUBLY NONLINEAR DIFFUSION EQUATION WITH NONLINEAR NEUMANN BOUNDARY CONDITIONS
    Chen, Na
    Wang, Peihe
    Li, Fushan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (03): : 1467 - 1484
  • [39] Global Existence and Blow-up of Solutions for A Porous Medium Equation
    Gao, Yunzhu
    Meng, Xi
    Gai, Hong
    ADVANCED BUILDING MATERIALS AND STRUCTURAL ENGINEERING, 2012, 461 : 532 - 536
  • [40] A further blow-up analysis for a localized porous medium equation
    Du, Lili
    Xiang, Zhaoyin
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (01) : 200 - 208