Blow-Up Phenomena for Porous Medium Equation with Nonlinear Flux on the Boundary

被引:0
|
作者
Hu, Yan [1 ]
Li, Jing [2 ]
Wang, Liangwei [1 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Wanzhou 404100, Peoples R China
[2] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
CAUCHY-PROBLEM; DIFFUSION;
D O I
10.1155/2013/952126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the blow-up phenomena for nonnegative solutions of porous medium equation with Neumann boundary conditions. We find that the absorption and the nonlinear flux on the boundary have some competitions in the blow-up phenomena.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Blow-up time estimates in porous medium equations with nonlinear boundary conditions
    Ding, Juntang
    Shen, Xuhui
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [22] Blow-up time estimates in porous medium equations with nonlinear boundary conditions
    Juntang Ding
    Xuhui Shen
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [23] BLOW-UP SOLUTIONS FOR A NONLINEAR WAVE EQUATION WITH POROUS ACOUSTIC BOUNDARY CONDITIONS
    Wu, Shun-Tang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [24] Multiple blow-up for a porous medium equation with reaction
    Mizoguchi, Noriko
    Quiros, Fernando
    Luis Vazquez, Juan
    MATHEMATISCHE ANNALEN, 2011, 350 (04) : 801 - 827
  • [25] Numerical blow-up for the porous medium equation with a source
    Ferreira, R
    Groisman, P
    Rossi, JD
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (04) : 552 - 575
  • [26] Lower bound for the blow-up time for a general nonlinear nonlocal porous medium equation under nonlinear boundary condition
    Baiping Ouyang
    Yiwu Lin
    Yan Liu
    Zihan Cai
    Boundary Value Problems, 2020
  • [27] Multiple blow-up for a porous medium equation with reaction
    Noriko Mizoguchi
    Fernando Quirós
    Juan Luis Vázquez
    Mathematische Annalen, 2011, 350 : 801 - 827
  • [28] Blow-up for a porous medium equation with a localized source
    Chen, YP
    Xie, CH
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (01) : 79 - 93
  • [29] Lower bound for the blow-up time for a general nonlinear nonlocal porous medium equation under nonlinear boundary condition
    Ouyang, Baiping
    Lin, Yiwu
    Liu, Yan
    Cai, Zihan
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [30] Blow-up phenomena for a quasilinear parabolic equation with inner source and nonlinear boundary condition
    Yang, Rui
    Fang, Zhong Bo
    Yi, Su-Cheol
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2016, 19 (04) : 601 - 616