On time-dependent Hamiltonian realizations of planar and nonplanar systems

被引:3
|
作者
Esen, Ogul [1 ]
Guha, Partha [2 ,3 ]
机构
[1] Gebze Tech Univ, Dept Math, TR-41400 Gebze, Kocaeli, Turkey
[2] SN Bose Natl Ctr Basic Sci, JD Block,Sect 3, Kolkata 700098, India
[3] IHES, Le Bois Marie 35 Rue Chartres, F-91440 Bures Sur Yvette, France
基金
巴西圣保罗研究基金会;
关键词
Jacobi's last multiplier; Cosymplectic manifolds; Time-dependent Hamiltonian dynamics; Nambu-Hamiltonian systems; Conformal Hamiltonian systems; JACOBI LAST MULTIPLIER; DIFFERENTIAL-EQUATIONS; VECTOR-FIELDS; POISSON;
D O I
10.1016/j.geomphys.2018.01.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we elucidate the key role played by the cosymplectic geometry in the theory of time dependent Hamiltonian systems in 2D. We generalize the cosymplectic structures to time-dependent Nambu-Poisson Hamiltonian systems and corresponding Jacobi's last multiplier for 3D systems. We illustrate our constructions with various examples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 45
页数:14
相关论文
共 50 条
  • [31] Quantum representation of a time-dependent quadratic Hamiltonian in a time-dependent phase space frame
    Leyvraz, F
    Manko, VI
    Seligman, TH
    [J]. PHYSICS LETTERS A, 1996, 210 (1-2) : 26 - 32
  • [32] On the algebraic approach to the time-dependent quadratic Hamiltonian
    Urdaneta, Ines
    Sandoval, Lourdes
    Palma, Alejandro
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
  • [33] Recent results on time-dependent Hamiltonian oscillators
    M. Robnik
    [J]. The European Physical Journal Special Topics, 2016, 225 : 1087 - 1101
  • [34] MULTIPOLE INTERACTION HAMILTONIAN FOR TIME-DEPENDENT FIELDS
    BARRON, LD
    GRAY, CG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1973, 6 (01): : 59 - 61
  • [35] Minimum Trotterization Formulas for a Time-Dependent Hamiltonian
    Ikeda, Tatsuhiko N.
    Abrar, Asir
    Chuang, Isaac L.
    Sugiura, Sho
    [J]. QUANTUM, 2023, 7
  • [36] Exact Invariants for a Time-Dependent Hamiltonian System
    Luo Xiao-Bing
    [J]. CHINESE PHYSICS LETTERS, 2009, 26 (01)
  • [37] Numerical quantum propagation with time-dependent Hamiltonian
    Zhu, WS
    Zhao, XS
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (21): : 9536 - 9545
  • [38] COMMENT ON MULTIPOLE HAMILTONIAN FOR TIME-DEPENDENT FIELDS
    WOOLLEY, RG
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1973, 6 (05) : L97 - L99
  • [39] Recent results on time-dependent Hamiltonian oscillators
    Robnik, M.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (6-7): : 1087 - 1101
  • [40] EXACT INVARIANTS FOR TIME-DEPENDENT HAMILTONIAN SYSTEMS WITH ONE DEGREE-OF-FREEDOM
    SARLET, W
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (05): : 843 - 854