Minimum Trotterization Formulas for a Time-Dependent Hamiltonian

被引:4
|
作者
Ikeda, Tatsuhiko N. [1 ,2 ,3 ]
Abrar, Asir [4 ]
Chuang, Isaac L. [5 ]
Sugiura, Sho [4 ,6 ]
机构
[1] RIKEN Ctr Quantum Comp, Saitama 3510198, Japan
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[4] NTT Res Inc, Phys & Informat Lab, 940 Stewart Dr, Sunnyvale, CA 94085 USA
[5] MIT, Codesign Ctr Quantum Advantage, Dept Phys, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[6] MIT, Lab Nucl Sci, Cambridge, MA 02139 USA
来源
QUANTUM | 2023年 / 7卷
关键词
DECOMPOSITION;
D O I
10.22331/q-2023-11-06-1168
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a time propagator e delta tA for dura-tion delta t consists of two noncommuting parts A = X + Y, Trotterization approximately decomposes the propagator into a prod-uct of exponentials of X and Y. Vari-ous Trotterization formulas have been uti-lized in quantum and classical comput-ers, but much less is known for the Trot-terization with the time-dependent gen-erator A(t). Here, for A(t) given by the sum of two operators X and Y with time-dependent coefficients A(t) = x(t)X + y(t)Y, we develop a systematic approach to derive high-order Trotterization for-mulas with minimum possible exp onen-tials. In particular, we obtain fourth-order and sixth-order Trotterization formulas in-volving seven and fifteen exponentials, re-spectively, which are no more than those for time-independent generators. We also construct another fourth-order formula consisting of nine exponentials having a smaller error coefficient. Finally, we nu-merically benchmark the fourth-order for-mulas in a Hamiltonian simulation for a quantum Ising chain, showing that the 9 -exponential formula accompanies smaller errors per local quantum gate than the well-known Suzuki formula.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Adaptive Trotterization for Time-Dependent Hamiltonian Quantum Dynamics Using Piecewise Conservation Laws
    Zhao, Hongzheng
    Bukov, Marin
    Heyl, Markus
    Moessner, Roderich
    PHYSICAL REVIEW LETTERS, 2024, 133 (01)
  • [2] Efficient and practical Hamiltonian simulation from time-dependent product formulas
    Jan Lukas Bosse
    Andrew M. Childs
    Charles Derby
    Filippo Maria Gambetta
    Ashley Montanaro
    Raul A. Santos
    Nature Communications, 16 (1)
  • [3] Hamiltonian time-dependent mechanics
    Sardanashvily, G. A.
    Journal of Mathematical Physics, 39 (05):
  • [4] TIME-DEPENDENT DRIFT HAMILTONIAN
    BOOZER, AH
    PHYSICS OF FLUIDS, 1984, 27 (10) : 2441 - 2445
  • [5] Hamiltonian time-dependent mechanics
    Sardanashvily, GA
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) : 2714 - 2729
  • [6] Computing the effective Hamiltonian for a time-dependent Hamiltonian
    Nolte, Martin
    Kroener, Dietmar
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 815 - 824
  • [7] Bohr Hamiltonian with time-dependent potential
    Naderi, L.
    Hassanabadi, H.
    Sobhani, H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2016, 25 (04):
  • [8] TRAPPING OF PARTICLES IN A TIME-DEPENDENT HAMILTONIAN
    BARBANIS, B
    CELESTIAL MECHANICS, 1976, 14 (02): : 201 - 208
  • [9] TIME-DEPENDENT SUPERINTEGRABLE HAMILTONIAN SYSTEMS
    Sardanashvily, G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (08)
  • [10] Constraints in Hamiltonian time-dependent mechanics
    Mangiarotti, L
    Sardanashvily, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 2858 - 2876