Minimum Trotterization Formulas for a Time-Dependent Hamiltonian

被引:4
|
作者
Ikeda, Tatsuhiko N. [1 ,2 ,3 ]
Abrar, Asir [4 ]
Chuang, Isaac L. [5 ]
Sugiura, Sho [4 ,6 ]
机构
[1] RIKEN Ctr Quantum Comp, Saitama 3510198, Japan
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[4] NTT Res Inc, Phys & Informat Lab, 940 Stewart Dr, Sunnyvale, CA 94085 USA
[5] MIT, Codesign Ctr Quantum Advantage, Dept Phys, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[6] MIT, Lab Nucl Sci, Cambridge, MA 02139 USA
来源
QUANTUM | 2023年 / 7卷
关键词
DECOMPOSITION;
D O I
10.22331/q-2023-11-06-1168
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a time propagator e delta tA for dura-tion delta t consists of two noncommuting parts A = X + Y, Trotterization approximately decomposes the propagator into a prod-uct of exponentials of X and Y. Vari-ous Trotterization formulas have been uti-lized in quantum and classical comput-ers, but much less is known for the Trot-terization with the time-dependent gen-erator A(t). Here, for A(t) given by the sum of two operators X and Y with time-dependent coefficients A(t) = x(t)X + y(t)Y, we develop a systematic approach to derive high-order Trotterization for-mulas with minimum possible exp onen-tials. In particular, we obtain fourth-order and sixth-order Trotterization formulas in-volving seven and fifteen exponentials, re-spectively, which are no more than those for time-independent generators. We also construct another fourth-order formula consisting of nine exponentials having a smaller error coefficient. Finally, we nu-merically benchmark the fourth-order for-mulas in a Hamiltonian simulation for a quantum Ising chain, showing that the 9 -exponential formula accompanies smaller errors per local quantum gate than the well-known Suzuki formula.
引用
收藏
页数:15
相关论文
共 50 条
  • [42] Hermitian Dirac Hamiltonian in the time-dependent gravitational field
    Leclerc, M
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (12) : 4013 - 4019
  • [43] Time-dependent general quantum quadratic Hamiltonian system
    Yeon, KH
    Um, CI
    George, TF
    PHYSICAL REVIEW A, 2003, 68 (05):
  • [44] ON THE TANGENT QUANTIZATION OF A DYNAMICAL SYSTEM WITH A TIME-DEPENDENT HAMILTONIAN
    HAMOUI, A
    LICHNEROWICZ, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (21): : 705 - 710
  • [45] Time-dependent constrained Hamiltonian systems and Dirac brackets
    deLeon, M
    Marrero, JC
    deDiego, DM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (21): : 6843 - 6859
  • [46] QUANTUM TOMOGRAPHY OF TIME-DEPENDENT NONLINEAR HAMILTONIAN SYSTEMS
    Man'ko, V., I
    Markovich, L. A.
    REPORTS ON MATHEMATICAL PHYSICS, 2019, 83 (01) : 87 - 106
  • [47] TIME-DEPENDENT QUADRATIC HAMILTONIAN AND THE HEISENBERG UNCERTAINTY PRINCIPLE
    JANNUSSIS, A
    KARAYANNIS, G
    PANAGOPOYLOS, P
    PAPATHEOU, V
    SIMEONIDIS, M
    VAVOYGIOS, D
    SIAFARIKAS, P
    ZISIS, V
    LETTERE AL NUOVO CIMENTO, 1983, 36 (02): : 41 - 43
  • [48] Accurate time propagation for the Schrodinger equation with an explicitly time-dependent Hamiltonian
    Kormann, Katharina
    Holmgren, Sverker
    Karlsson, Hans O.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (18):
  • [49] Memory formulas for perturbations in time-dependent density functional theory
    Maitra, NT
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 102 (05) : 573 - 581
  • [50] Additional time-dependent phase in the flavor-conversion formulas
    Bernardini, AE
    EUROPHYSICS LETTERS, 2006, 73 (02): : 157 - 163