AN EIGENVALUE ESTIMATE FOR A ROBIN p-LAPLACIAN IN C1 DOMAINS

被引:1
|
作者
Pankrashkin, Konstantin [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Fak Math & Nat Wissensch 5, Inst Math, D-26111 Oldenburg, Germany
关键词
Eigenvalue; p-Laplacian; Robin boundary condition;
D O I
10.1090/proc/15116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-n be a bounded C-1 domain and p > 1. For alpha > 0, define the quantity Lambda(alpha) = inf(u is an element of W1,p (Omega), u not equivalent to 0) (integral(Omega) vertical bar del u vertical bar(p) dx - alpha integral(partial derivative Omega) vertical bar u vertical bar(p) ds)/integral(Omega)vertical bar u vertical bar(p) dx with ds being the hypersurface measure, which is the lowest eigenvalue of the p-Laplacian in Omega with a non-linear alpha-dependent Robin boundary condition. We show the asymptotics Lambda(alpha) = (1 - p)alpha(P/(P-1) )+ o(alpha(P/(P-1))) as alpha tends to +infinity. The result was only known for the linear case p = 2 or under stronger smoothness assumptions. Our proof is much shorter and is based on completely different and elementary arguments, and it allows for an improved remainder estimate for C-1,C-lambda domains.
引用
收藏
页码:4471 / 4477
页数:7
相关论文
共 50 条
  • [1] Eigenvalue estimate for the weighted p-Laplacian
    Lin Feng Wang
    [J]. Annali di Matematica Pura ed Applicata, 2012, 191 : 539 - 550
  • [2] Eigenvalue estimate for the weighted p-Laplacian
    Wang, Lin Feng
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (03) : 539 - 550
  • [3] A PRIORI ESTIMATE FOR THE FIRST EIGENVALUE OF THE p-LAPLACIAN
    Kajikiya, Ryuji
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (9-10) : 1011 - 1028
  • [4] Sharp estimate on the first eigenvalue of the p-Laplacian
    Valtorta, Daniele
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 4974 - 4994
  • [5] First Robin eigenvalue of the p-Laplacian on Riemannian manifolds
    Xiaolong Li
    Kui Wang
    [J]. Mathematische Zeitschrift, 2021, 298 : 1033 - 1047
  • [6] First Robin eigenvalue of the p-Laplacian on Riemannian manifolds
    Li, Xiaolong
    Wang, Kui
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1033 - 1047
  • [7] On the behavior of the first eigenvalue of the p-Laplacian with Robin boundary conditions as p goes to 1
    Della Pietra, Francesco
    Nitsch, Carlo
    Oliva, Francescantonio
    Trombetti, Cristina
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2023, 16 (04) : 1123 - 1135
  • [8] Hardy inequalities for the Robin p-Laplacian in general domains
    Jin, Yongyang
    Wei, Qing
    Tang, Li
    Zhan, Senjie
    [J]. ARCHIV DER MATHEMATIK, 2022, 118 (03) : 315 - 322
  • [9] Hardy inequalities for the Robin p-Laplacian in general domains
    Yongyang Jin
    Qing Wei
    Li Tang
    Senjie Zhan
    [J]. Archiv der Mathematik, 2022, 118 : 315 - 322
  • [10] Inverse power method for the principal eigenvalue of the Robin p-Laplacian
    Yousefnezhad, Mohsen
    Mohammadi, S. A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 127