Bounds for the Laplacian spectral radius of graphs

被引:7
|
作者
Liu, Huiqing [1 ]
Lu, Mei [2 ]
机构
[1] Hubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2010年 / 58卷 / 01期
关键词
graph; non-regular graph; Laplacian spectral radius; LARGEST EIGENVALUE; SHARP UPPER; MATRIX;
D O I
10.1080/03081080802450021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph with n vertices, m edges, diameter D and degree sequence d(1), d(2), ..., d(n), and let lambda(1)(G) be the largest Laplacian eigenvalue of G. Denote Delta = max{d(i) : 1 <= i <= n}, ((alpha)t)(i) = Sigma(i similar to j) d(j)(alpha) and ((alpha)m)(i) = ((alpha)t)(i)/d(i)(alpha), where alpha is a real number. In this article, we first give an upper bound on lambda(1)(G) for a non-regular graph involving Delta and D; next present two upper bounds on lambda(1)(G) for a connected graph in terms of d(i) and ((alpha)m)(i); at last obtain a lower bound on lambda(1)(G) for a connected bipartite graph in terms of d(i) and ((alpha)t)(i). Some known results are shown to be the consequences of our theorems.
引用
收藏
页码:113 / 119
页数:7
相关论文
共 50 条
  • [21] Upper Bounds on the (Signless Laplacian) Spectral Radius of Irregular Weighted Graphs
    Xie, Shuiqun
    Chen, Xiaodan
    Li, Xiuyu
    Liu, Xiaoqian
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2063 - 2080
  • [22] THE LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 835 - 847
  • [23] On the Laplacian Spectral Radius of Graphs
    Xu, Guanghui
    Xu, Changqing
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 164 - 167
  • [24] The Laplacian spectral radius of graphs
    Jianxi Li
    Wai Chee Shiu
    An Chang
    [J]. Czechoslovak Mathematical Journal, 2010, 60 : 835 - 847
  • [25] BOUNDS FOR SIGNLESS LAPLACIAN SPECTRAL RADIUS
    Nurkahli, Semiha Basdas
    Kabatas, Ulkunur
    Kizilca, Fatma
    [J]. JOURNAL OF SCIENCE AND ARTS, 2018, (03): : 631 - 644
  • [26] Some bounds on spectral radius of signless Laplacian matrix of k-graphs
    Zhang, Junhao
    Zhu, Zhongxun
    [J]. RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) : 2267 - 2278
  • [27] On the distance Laplacian spectral radius of graphs
    Lin, Hongying
    Zhou, Bo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 : 265 - 275
  • [28] The Laplacian spectral radius of some graphs
    Li, Jianxi
    Shiu, Wai Chee
    Chan, Wai Hong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (1-2) : 99 - 103
  • [29] The Laplacian spectral radius of graphs on surfaces
    Lin, Liang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 973 - 977
  • [30] A note on the bounds for the spectral radius of graphs
    Filipovski, Slobodan
    Stevanovic, Dragan
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 667 : 1 - 9