Reference tissue quantification of DCE-MRI data without a contrast agent calibration

被引:26
|
作者
Walker-Samuel, Simon [1 ]
Leach, Martin O.
Collins, David J.
机构
[1] Inst Canc Res, Canc Res UK Clin Magnet Resonance Res Grp, Sutton SM2 5NG, Surrey, England
[2] Royal Marsden NHS Fdn Trust, Sutton SM2 5NG, Surrey, England
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2007年 / 52卷 / 03期
关键词
D O I
10.1088/0031-9155/52/3/004
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The quantification of dynamic contrast- enhanced ( DCE) MRI data conventionally requires a conversion from signal intensity to contrast agent concentration by measuring a change in the tissue longitudinal relaxation rate, R-1. In this paper, it is shown that the use of a spoiled gradient- echo acquisition sequence ( optimized so that signal intensity scales linearly with contrast agent concentration) in conjunction with a reference tissue- derived vascular input function ( VIF), avoids the need for the conversion to Gd- DTPA concentration. This study evaluates how to optimize such sequences and which dynamic time-series parameters are most suitable for this type of analysis. It is shown that signal difference and relative enhancement provide useful alternatives when full contrast agent quantification cannot be achieved, but that pharmacokinetic parameters derived from both contain sources of error ( such as those caused by differences between reference tissue and region of interest proton density and native T-1 values). It is shown in a rectal cancer study that these sources of uncertainty are smaller when using signal difference, compared with relative enhancement ( 15 +/- 4% compared with 33 +/- 4%). Both of these uncertainties are of the order of those associated with the conversion to Gd- DTPA concentration, according to literature estimates.
引用
收藏
页码:589 / 601
页数:13
相关论文
共 50 条
  • [41] Revisiting DCE-MRI Classification of Prostate Tissue Using Descriptive Signal Enhancement Features Derived From DCE-MRI Acquisition With High Spatiotemporal Resolution
    Breit, Hanns C.
    Block, Tobias K.
    Winkel, David J.
    Gehweiler, Julian E.
    Glessgen, Carl G.
    Seifert, Helge
    Wetterauer, Christian
    Boll, Daniel T.
    Heye, Tobias J.
    INVESTIGATIVE RADIOLOGY, 2021, 56 (09) : 553 - 562
  • [42] Is it possible to predict the radiosensitivity of cervical cancer using dynamic contrast enhanced MRI (DCE-MRI)?
    Szluha, Lazanyi K.
    Pintye, E.
    Benko, K.
    Der, A.
    Poka, R.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2011, 187 : 48 - 48
  • [43] A Fully Automated System for Quantification of Background Parenchymal Enhancement in Breast DCE-MRI
    Dalmis, Mehmet Ufuk
    Gubern-Merida, Albert
    Borelli, Cristina
    Vreemann, Suzan
    Mann, Ritse M.
    Karssemeijer, Nico
    MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [44] QUANTIFICATION OF DCE-MRI: A VALIDATION OF THREE TECHNIQUES WITH 3D-HISTOLOGY
    Bol, Karin
    Haeck, Joost C.
    Alic, Lejla
    Niessen, Wiro J.
    de Jong, Marion
    Bernsen, Monique
    Veenland, Jifke F.
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1044 - 1047
  • [45] Anti-angiogenic Effects of Bumetanide Revealed by DCE-MRI with a Biodegradable Macromolecular Contrast Agent in a Colon Cancer Model
    Anthony S. Malamas
    Erlei Jin
    Qi Zhang
    John Haaga
    Zheng-Rong Lu
    Pharmaceutical Research, 2015, 32 : 3029 - 3043
  • [46] An analysis of the pharmacokinetic parameter ratios in DCE-MRI using the reference region model
    Lee, Joonsang
    Platt, Simon
    Kent, Marc
    Zhao, Qun
    MAGNETIC RESONANCE IMAGING, 2012, 30 (01) : 26 - 35
  • [47] Dynamic contrast enhanced MRI (DCE-MRI) implementation and reproducibility for quantitative analysis in a multi-center trial of an anti-angiogenic agent
    Chica, S.
    Young, H.
    Waterlon, J.
    Parker, G.
    Schaewe, T.
    Jacobs, R.
    EJC SUPPLEMENTS, 2005, 3 (02): : 319 - 319
  • [48] Unfolding of Aliased Dynamic Acquisitions for the Acceleration of Breast Dynamic-Contrast Enhanced MRI (DCE-MRI)
    Pineda, F.
    Medved, M.
    Fan, X.
    Karczmar, G.
    MEDICAL PHYSICS, 2016, 43 (06) : 3391 - 3391
  • [49] Histologic characterization of DCE-MRI breast tumors with dimensional data reduction
    Varini, Claudio
    Degenhard, Andreas
    Nattkemper, Tim W.
    MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [50] Quantification of Tumor Changes during Neoadjuvant Chemotherapy with Longitudinal Breast DCE-MRI Registration
    Wu, Jia
    Ou, Yangming
    Weinstein, Susan P.
    Conant, Emily F.
    Yu, Ning
    Hoshmand, Vahid
    Keller, Brad
    Ashraf, Ahmed B.
    Rosen, Mark
    DeMichele, Angela
    Davatzikos, Christos
    Kontos, Despina
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414