Bayesian Approach in Nonparametric Count Regression with Binomial Kernel

被引:6
|
作者
Zougab, Nabil [1 ]
Adjabi, Smail [1 ]
Kokonendji, Celestin C. [2 ]
机构
[1] Univ Bejaia, Lab LAMOS, Bejaia 06000, Algeria
[2] Univ Franche Comte, LMB UMR CNRS 6623, F-25030 Besancon, France
关键词
Bandwidth; Count function; Cross-validation; Kernel; MCMC; DISCRETE TRIANGULAR DISTRIBUTIONS; BANDWIDTH SELECTION;
D O I
10.1080/03610918.2012.725145
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, Kokonendji etal. have adapted the well-known Nadaraya-Watson kernel estimator for estimating the count function m in the context of nonparametric discrete regression. The authors have also investigated the bandwidth selection using the cross-validation method. In this article, we propose a Bayesian approach in the context of nonparametric count regression for estimating the bandwidth and the variance of the model error, which has not been estimated in Kokonendji etal. The model error is considered as Gaussian with mean of zero and a variance of sigma(2). The Bayes estimates cannot be obtained in closed form and then, we use the well-known Markov chain Monte Carlo (MCMC) technique to compute the Bayes estimates under the squared errors loss function. The performance of this proposed approach and the cross-validation method are compared through simulation and real count data.
引用
收藏
页码:1052 / 1063
页数:12
相关论文
共 50 条
  • [41] Robustifying Bayesian Nonparametric Mixtures for Count Data
    Canale, Antonio
    Prunster, Igor
    BIOMETRICS, 2017, 73 (01) : 174 - 184
  • [42] Bayesian nonparametric multivariate ordinal regression
    Bao, Junshu
    Hanson, Timothy E.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (03): : 337 - 357
  • [43] Bayesian wavelet networks for nonparametric regression
    Holmes, CC
    Mallick, BK
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (01): : 27 - 35
  • [44] Bayesian neural network for nonparametric regression
    Yang, Bin
    Nie, Zaiping
    Xia, Yaoxian
    Jiang, Rongsheng
    2002, Univ. of Electronic Science and Technology of China (31):
  • [45] A nonparametric dependent process for Bayesian regression
    Fuentes-Garcia, Ruth
    Mena, Ramses H.
    Walker, Stephen G.
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (08) : 1112 - 1119
  • [46] Bayesian Nonparametric ROC Regression Modeling
    Inacio de Carvalho, Vanda
    Jara, Alejandro
    Hanson, Timothy E.
    de Carvalho, Miguel
    BAYESIAN ANALYSIS, 2013, 8 (03): : 623 - 645
  • [47] Bayesian Nonparametric Multiple Instance Regression
    Subramanian, Saravanan
    Rana, Santu
    Gupta, Sunil
    Sivakumar, P. Bagavathi
    Velayutham, C. Shunmuga
    Venkatesh, Svetha
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3661 - 3666
  • [48] The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations
    Benelmadani, D.
    Benhenni, K.
    Louhichi, S.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (06) : 1479 - 1500
  • [49] The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations
    D. Benelmadani
    K. Benhenni
    S. Louhichi
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 1479 - 1500
  • [50] A NONPARAMETRIC BAYESIAN MODEL FOR KERNEL MATRIX COMPLETION
    Paisley, John
    Carin, Lawrence
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2090 - 2093