Bayesian Approach in Nonparametric Count Regression with Binomial Kernel

被引:6
|
作者
Zougab, Nabil [1 ]
Adjabi, Smail [1 ]
Kokonendji, Celestin C. [2 ]
机构
[1] Univ Bejaia, Lab LAMOS, Bejaia 06000, Algeria
[2] Univ Franche Comte, LMB UMR CNRS 6623, F-25030 Besancon, France
关键词
Bandwidth; Count function; Cross-validation; Kernel; MCMC; DISCRETE TRIANGULAR DISTRIBUTIONS; BANDWIDTH SELECTION;
D O I
10.1080/03610918.2012.725145
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, Kokonendji etal. have adapted the well-known Nadaraya-Watson kernel estimator for estimating the count function m in the context of nonparametric discrete regression. The authors have also investigated the bandwidth selection using the cross-validation method. In this article, we propose a Bayesian approach in the context of nonparametric count regression for estimating the bandwidth and the variance of the model error, which has not been estimated in Kokonendji etal. The model error is considered as Gaussian with mean of zero and a variance of sigma(2). The Bayes estimates cannot be obtained in closed form and then, we use the well-known Markov chain Monte Carlo (MCMC) technique to compute the Bayes estimates under the squared errors loss function. The performance of this proposed approach and the cross-validation method are compared through simulation and real count data.
引用
收藏
页码:1052 / 1063
页数:12
相关论文
共 50 条
  • [11] A Bayesian nonparametric approach to correct for underreporting in count data
    Arima, Serena
    Polettini, Silvia
    Pasculli, Giuseppe
    Gesualdo, Loreto
    Pesce, Francesco
    Procaccini, Deni-Aldo
    BIOSTATISTICS, 2023, 25 (03) : 904 - 918
  • [12] Bayesian approach to bandwidth selection for multivariate count regression function estimation by associated discrete kernel
    Djerroud L.
    Zougab N.
    Adjabi S.
    Journal of Statistical Theory and Practice, 2017, 11 (4) : 553 - 572
  • [13] NONPARAMETRIC BAYESIAN REGRESSION
    BARRY, D
    ANNALS OF STATISTICS, 1986, 14 (03): : 934 - 953
  • [14] A Bayesian approach for nonparametric regression in the presence of correlated errors
    Megheib, Mohamed
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (12) : 6168 - 6177
  • [15] Kernel adjusted nonparametric regression
    Eichner, Gerrit
    Stute, Winfried
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (09) : 2537 - 2544
  • [16] Kernel Selection in Nonparametric Regression
    Halconruy, H.
    Marie, N.
    MATHEMATICAL METHODS OF STATISTICS, 2020, 29 (01) : 32 - 56
  • [17] Kernel Selection in Nonparametric Regression
    H. Halconruy
    N. Marie
    Mathematical Methods of Statistics, 2020, 29 : 32 - 56
  • [18] Bayesian negative binomial mixture regression models for the analysis of sequence count and methylation data
    Li, Qiwei
    Cassese, Alberto
    Guindani, Michele
    Vannucci, Marina
    BIOMETRICS, 2019, 75 (01) : 183 - 192
  • [19] Nonparametric Bayesian Negative Binomial Factor Analysis
    Zhou, Mingyuan
    BAYESIAN ANALYSIS, 2018, 13 (04): : 1061 - 1089
  • [20] Bandwidth selection for kernel binomial regression
    Okumura, Hidenori
    Naito, Kanta
    JOURNAL OF NONPARAMETRIC STATISTICS, 2006, 18 (4-6) : 343 - 356