Inference in High-Dimensional Parameter Space

被引:1
|
作者
O'Hare, Anthony [1 ]
机构
[1] Univ Stirling, Sch Nat Sci, Comp Sci & Math, Stirling FK9 4LA, Scotland
关键词
algorithms; Markov chains; MCMC; Monte Carlo likelihood; stochastic processes;
D O I
10.1089/cmb.2015.0086
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Model parameter inference has become increasingly popular in recent years in the field of computational epidemiology, especially for models with a large number of parameters. Techniques such as Approximate Bayesian Computation (ABC) or maximum/partial likelihoods are commonly used to infer parameters in phenomenological models that best describe some set of data. These techniques rely on efficient exploration of the underlying parameter space, which is difficult in high dimensions, especially if there are correlations between the parameters in the model that may not be known a priori. The aim of this article is to demonstrate the use of the recently invented Adaptive Metropolis algorithm for exploring parameter space in a practical way through the use of a simple epidemiological model.
引用
收藏
页码:997 / 1004
页数:8
相关论文
共 50 条
  • [21] Bayesian inference for high-dimensional decomposable graphs
    Lee, Kyoungjae
    Cao, Xuan
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 1549 - 1582
  • [22] High-dimensional statistical inference via DATE
    Zheng, Zemin
    Liu, Lei
    Li, Yang
    Zhao, Ni
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (01) : 65 - 79
  • [23] Inference for High-Dimensional Sparse Econometric Models
    Belloni, Alexandre
    Chernozhukov, Victor
    Hansen, Christian B.
    ADVANCES IN ECONOMICS AND ECONOMETRICS, VOL III: ECONOMETRICS, 2013, (51): : 245 - 295
  • [24] Group inference for high-dimensional mediation models
    Ke Yu
    Xu Guo
    Shan Luo
    Statistics and Computing, 2025, 35 (3)
  • [25] High-dimensional inference for personalized treatment decision
    Jeng, X. Jessie
    Lu, Wenbin
    Peng, Huimin
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 2074 - 2089
  • [26] Rejoinder on: High-dimensional simultaneous inference with the bootstrap
    Dezeure, Ruben
    Bhlmann, Peter
    Zhang, Cun-Hui
    TEST, 2017, 26 (04) : 751 - 758
  • [27] Scalable inference for high-dimensional precision matrix
    Zheng, Zemin
    Wang, Yue
    Yu, Yugang
    Li, Yang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (23) : 8205 - 8224
  • [28] Inference for High-Dimensional Censored Quantile Regression
    Fei, Zhe
    Zheng, Qi
    Hong, Hyokyoung G.
    Li, Yi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 898 - 912
  • [29] Variational Inference in high-dimensional linear regression
    Mukherjee, Sumit
    Sen, Subhabrata
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [30] Comments on: High-dimensional simultaneous inference with the bootstrap
    Richard A. Lockhart
    Richard J. Samworth
    TEST, 2017, 26 : 734 - 739