A Metaheuristic Optimization Approach for Parameter Estimation in Arrhythmia Classification from Unbalanced Data

被引:13
|
作者
Carlos Carrillo-Alarcon, Juan [1 ]
Alberto Morales-Rosales, Luis [2 ]
Rodriguez-Rangel, Hector [3 ]
Lobato-Baez, Mariana [4 ]
Munoz, Antonio [5 ]
Algredo-Badillo, Ignacio [6 ]
机构
[1] Inst Nacl Astrofis Opt & Elect INAOE, Dept Comp Sci, Puebla 72840, Mexico
[2] Univ Michoacana, Fac Civil Engn, Conacyt, Morelia 58030, Michoacan, Mexico
[3] Technol Inst Culiacan, Culiacan 80220, Sinaloa, Mexico
[4] Higher Technol Inst Libres, Puebla 73780, Mexico
[5] Univ Guadalajara, Engn Dept, Av Independencia Nacl 151, Autlan de Navarro 48900, Jalisco, Mexico
[6] Inst Nacl Astrofis Opt & Elect INAOE, Dept Comp Sci, Conacyt, Puebla 72840, Mexico
关键词
electrocardiogram (ECG); signal processing; machine learning; arrhythmia; unbalanced; HEARTBEAT CLASSIFICATION; ECG; RECOGNITION; SELECTION; ENSEMBLE; FEATURES;
D O I
10.3390/s20113139
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The electrocardiogram records the heart's electrical activity and generates a significant amount of data. The analysis of these data helps us to detect diseases and disorders via heart bio-signal abnormality classification. In unbalanced-data contexts, where the classes are not equally represented, the optimization and configuration of the classification models are highly complex, reflecting on the use of computational resources. Moreover, the performance of electrocardiogram classification depends on the approach and parameter estimation to generate the model with high accuracy, sensitivity, and precision. Previous works have proposed hybrid approaches and only a few implemented parameter optimization. Instead, they generally applied an empirical tuning of parameters at a data level or an algorithm level. Hence, a scheme, including metrics of sensitivity in a higher precision and accuracy scale, deserves special attention. In this article, a metaheuristic optimization approach for parameter estimations in arrhythmia classification from unbalanced data is presented. We selected an unbalanced subset of those databases to classify eight types of arrhythmia. It is important to highlight that we combined undersampling based on the clustering method (data level) and feature selection method (algorithmic level) to tackle the unbalanced class problem. To explore parameter estimation and improve the classification for our model, we compared two metaheuristic approaches based on differential evolution and particle swarm optimization. The final results showed an accuracy of 99.95%, a F1 score of 99.88%, a sensitivity of 99.87%, a precision of 99.89%, and a specificity of 99.99%, which are high, even in the presence of unbalanced data.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Modal parameter estimation from inconsistent data
    Jacobsen, N-J
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2012) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2012), 2012, : 2775 - 2784
  • [42] Autoregressive parameter estimation from noisy data
    Zheng, WX
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2000, 47 (01): : 71 - 75
  • [43] Noise parameter estimation from quantized data
    Moschitta, Antonio
    Carbone, Paolo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2007, 56 (03) : 736 - 742
  • [44] Modal parameter estimation from operating data
    Richardson, Mark
    Schwarz, Brian
    S V Sound and Vibration, 2003, 37 (01): : 28 - 36
  • [45] Modal parameter estimation from operating data
    Richardson, M
    Schwarz, B
    SOUND AND VIBRATION, 2003, 37 (01): : 28 - 36
  • [46] Adaptive Particle Swarm Optimization Algorithm Ensemble Model Applied to Classification of Unbalanced Data
    Zheng, Dawei
    Qin, Chao
    Liu, Peipei
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [47] PARAMETER-ESTIMATION FROM NONCONTIGUOUS DATA
    GAWTHROP, PJ
    IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1984, 131 (06): : 261 - 266
  • [48] Noise parameter estimation from quantized data
    Moschitta, A.
    Carbone, P.
    2006 IEEE INTERNATIONAL WORKSHOP ON ADVANCED METHODS FOR UNCERTAINTY ESTIMATION, 2006, : 57 - +
  • [49] PARAMETER-ESTIMATION FROM MULTIRESPONSE DATA
    STEWART, WE
    CARACOTSIOS, M
    SORENSEN, JP
    AICHE JOURNAL, 1992, 38 (05) : 641 - 650
  • [50] Parameter estimation and classification of multi-scale remote sensing data
    Storvik, G
    Fjortoft, R
    Solberg, AHS
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1047 - 1049