A Metaheuristic Optimization Approach for Parameter Estimation in Arrhythmia Classification from Unbalanced Data

被引:13
|
作者
Carlos Carrillo-Alarcon, Juan [1 ]
Alberto Morales-Rosales, Luis [2 ]
Rodriguez-Rangel, Hector [3 ]
Lobato-Baez, Mariana [4 ]
Munoz, Antonio [5 ]
Algredo-Badillo, Ignacio [6 ]
机构
[1] Inst Nacl Astrofis Opt & Elect INAOE, Dept Comp Sci, Puebla 72840, Mexico
[2] Univ Michoacana, Fac Civil Engn, Conacyt, Morelia 58030, Michoacan, Mexico
[3] Technol Inst Culiacan, Culiacan 80220, Sinaloa, Mexico
[4] Higher Technol Inst Libres, Puebla 73780, Mexico
[5] Univ Guadalajara, Engn Dept, Av Independencia Nacl 151, Autlan de Navarro 48900, Jalisco, Mexico
[6] Inst Nacl Astrofis Opt & Elect INAOE, Dept Comp Sci, Conacyt, Puebla 72840, Mexico
关键词
electrocardiogram (ECG); signal processing; machine learning; arrhythmia; unbalanced; HEARTBEAT CLASSIFICATION; ECG; RECOGNITION; SELECTION; ENSEMBLE; FEATURES;
D O I
10.3390/s20113139
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The electrocardiogram records the heart's electrical activity and generates a significant amount of data. The analysis of these data helps us to detect diseases and disorders via heart bio-signal abnormality classification. In unbalanced-data contexts, where the classes are not equally represented, the optimization and configuration of the classification models are highly complex, reflecting on the use of computational resources. Moreover, the performance of electrocardiogram classification depends on the approach and parameter estimation to generate the model with high accuracy, sensitivity, and precision. Previous works have proposed hybrid approaches and only a few implemented parameter optimization. Instead, they generally applied an empirical tuning of parameters at a data level or an algorithm level. Hence, a scheme, including metrics of sensitivity in a higher precision and accuracy scale, deserves special attention. In this article, a metaheuristic optimization approach for parameter estimations in arrhythmia classification from unbalanced data is presented. We selected an unbalanced subset of those databases to classify eight types of arrhythmia. It is important to highlight that we combined undersampling based on the clustering method (data level) and feature selection method (algorithmic level) to tackle the unbalanced class problem. To explore parameter estimation and improve the classification for our model, we compared two metaheuristic approaches based on differential evolution and particle swarm optimization. The final results showed an accuracy of 99.95%, a F1 score of 99.88%, a sensitivity of 99.87%, a precision of 99.89%, and a specificity of 99.99%, which are high, even in the presence of unbalanced data.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] PERMMA: Enhancing parameter estimation of software reliability growth models: A comparative analysis of metaheuristic optimization algorithms
    Pradhan, Vishal
    Patra, Arijit
    Jain, Ankush
    Jain, Garima
    Kumar, Ajay
    Dhar, Joydip
    Bandyopadhyay, Anjan
    Mallik, Saurav
    Ahmad, Naim
    Badawy, Ahmed Said
    PLOS ONE, 2024, 19 (09):
  • [32] Classification-Based Parameter Optimization Approach of the Turning Process
    Yang, Lei
    Jiang, Yibo
    Yang, Yawei
    Zeng, Guowen
    Zhu, Zongzhi
    Chen, Jiaxi
    MACHINES, 2024, 12 (11)
  • [33] Parameter estimation of photovoltaic cell and module models relied on metaheuristic algorithms including artificial ecosystem optimization
    Thuan Thanh Nguyen
    Thang Trung Nguyen
    Thanh Ngoc Tran
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (15): : 12819 - 12844
  • [34] Parameter estimation of photovoltaic cell and module models relied on metaheuristic algorithms including artificial ecosystem optimization
    Thuan Thanh Nguyen
    Thang Trung Nguyen
    Thanh Ngoc Tran
    Neural Computing and Applications, 2022, 34 : 12819 - 12844
  • [35] An optimization-based approach for data classification
    Busygin, St.
    Prokopyev, O. A.
    Pardalos, P. M.
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (01): : 3 - 9
  • [36] Crow Search Optimization Based Approach for Parameter Estimation of SRGMs
    Chaudhary, Ankur
    Agarwal, Arun Prakash
    Rana, Arvind
    Kumar, Vijay
    PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 583 - 587
  • [37] An integration based optimization approach for parameter estimation in dynamic models
    Yuceer, M
    Atasoy, I
    Berber, R
    European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 631 - 636
  • [38] When Costs Are Unequal and Unknown: A Subtree Grafting Approach for Unbalanced Data Classification
    Lee, Jong-Seok
    Zhu, Dan
    DECISION SCIENCES, 2011, 42 (04) : 803 - 829
  • [39] Cosmological parameter estimation from SN Ia data: a model-independent approach
    Benitez-Herrera, S.
    Ishida, E. E. O.
    Maturi, M.
    Hillebrandt, W.
    Bartelmann, M.
    Roepke, F.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 436 (01) : 854 - 858
  • [40] Population approach improves parameter estimation of kinetic models from dynamic PET data
    Bertoldo, A
    Sparacino, G
    Cobelli, C
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (03) : 297 - 306