A Metaheuristic Optimization Approach for Parameter Estimation in Arrhythmia Classification from Unbalanced Data

被引:13
|
作者
Carlos Carrillo-Alarcon, Juan [1 ]
Alberto Morales-Rosales, Luis [2 ]
Rodriguez-Rangel, Hector [3 ]
Lobato-Baez, Mariana [4 ]
Munoz, Antonio [5 ]
Algredo-Badillo, Ignacio [6 ]
机构
[1] Inst Nacl Astrofis Opt & Elect INAOE, Dept Comp Sci, Puebla 72840, Mexico
[2] Univ Michoacana, Fac Civil Engn, Conacyt, Morelia 58030, Michoacan, Mexico
[3] Technol Inst Culiacan, Culiacan 80220, Sinaloa, Mexico
[4] Higher Technol Inst Libres, Puebla 73780, Mexico
[5] Univ Guadalajara, Engn Dept, Av Independencia Nacl 151, Autlan de Navarro 48900, Jalisco, Mexico
[6] Inst Nacl Astrofis Opt & Elect INAOE, Dept Comp Sci, Conacyt, Puebla 72840, Mexico
关键词
electrocardiogram (ECG); signal processing; machine learning; arrhythmia; unbalanced; HEARTBEAT CLASSIFICATION; ECG; RECOGNITION; SELECTION; ENSEMBLE; FEATURES;
D O I
10.3390/s20113139
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The electrocardiogram records the heart's electrical activity and generates a significant amount of data. The analysis of these data helps us to detect diseases and disorders via heart bio-signal abnormality classification. In unbalanced-data contexts, where the classes are not equally represented, the optimization and configuration of the classification models are highly complex, reflecting on the use of computational resources. Moreover, the performance of electrocardiogram classification depends on the approach and parameter estimation to generate the model with high accuracy, sensitivity, and precision. Previous works have proposed hybrid approaches and only a few implemented parameter optimization. Instead, they generally applied an empirical tuning of parameters at a data level or an algorithm level. Hence, a scheme, including metrics of sensitivity in a higher precision and accuracy scale, deserves special attention. In this article, a metaheuristic optimization approach for parameter estimations in arrhythmia classification from unbalanced data is presented. We selected an unbalanced subset of those databases to classify eight types of arrhythmia. It is important to highlight that we combined undersampling based on the clustering method (data level) and feature selection method (algorithmic level) to tackle the unbalanced class problem. To explore parameter estimation and improve the classification for our model, we compared two metaheuristic approaches based on differential evolution and particle swarm optimization. The final results showed an accuracy of 99.95%, a F1 score of 99.88%, a sensitivity of 99.87%, a precision of 99.89%, and a specificity of 99.99%, which are high, even in the presence of unbalanced data.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Arrhythmia classification using multirate processing metaheuristic optimization and variational mode decomposition
    Qaisar, Saeed Mian
    Khan, Sibghatulla I.
    Srinivasan, Kathiravan
    Krichen, Moez
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (01) : 26 - 37
  • [2] Parameter Optimization of Water Distribution Network - A Hybrid Metaheuristic Approach
    Bilal
    Pant, Millie
    MATERIALS AND MANUFACTURING PROCESSES, 2020, 35 (06) : 737 - 749
  • [3] A geometric approach to parameter estimation from tomographic data
    Chernyavskiy, A
    Whitaker, R
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 752 - 755
  • [4] Deep learning approach for brain tumor classification using metaheuristic optimization with gene expression data
    Joshi, Amol Avinash
    Aziz, Rabia Musheer
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (02)
  • [5] ON THE ESTIMATION OF HERITABILITY FROM UNBALANCED DATA
    SINGH, B
    BIOMETRICAL JOURNAL, 1993, 35 (07) : 823 - 831
  • [6] A Hybrid Optimization Approach to Parameter Estimation
    Faber, Richard
    Arellano-Garcia, Harvey
    Wozny, Guenter
    17TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2007, 24 : 75 - 80
  • [7] Bishop model parameter estimation in photovoltaic cells using metaheuristic optimization techniques
    Restrepo-Cuestas, Bonie Johana
    Montano, Jhon
    SOLAR ENERGY, 2024, 270
  • [8] Parameter estimation with bio-inspired metaheuristic optimization: modeling the dynamics of endocytosis
    Tashkova, Katerina
    Korosec, Peter
    Silc, Jurij
    Todorovski, Ljupco
    Dzeroski, Saso
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [9] Parameter estimation for Bayesian classification of multispectral data
    Mohamed, RM
    Farag, AA
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2003, 2773 : 346 - 355
  • [10] SIMPLE PARAMETER-ESTIMATION IN DATA CLASSIFICATION
    LATYSHEV, VV
    RADIOTEKHNIKA I ELEKTRONIKA, 1994, 39 (03): : 429 - 438